10528-67-3Relevant articles and documents
Effect of solvent on the hydrogenation of 4-phenyl-2-butanone over Pt based catalysts
McManus,Daly,Thompson,Connor,Hardacre,Wilkinson,Sedaie Bonab,Ten Dam,Simmons,Stitt,D'Agostino,McGregor,Gladden,Delgado
, p. 344 - 353 (2015)
The hydrogenation of 4-phenyl-2-butanone over Pt/TiO2 and Pt/SiO2 catalysts has been performed in a range of solvents and it has been observed that the solvent impacted on the selectivity of ketone and aromatic ring hydrogenation as well as the overall TOF of the titania catalyst with no solvent effect on selectivity observed using the silica supported catalyst where ring hydrogenation was favored. For the titania catalyst, alkanes were found to favor ring hydrogenation whereas aromatics and alcohols led to carbonyl hydrogenation. A two-site catalyst model is proposed whereby the aromatic ring hydrogenation occurs over the metal sites while carbonyl hydrogenation is thought to occur predominantly at interfacial sites, with oxygen vacancies in the titania support activating the carbonyl. The effect of the solvent on the hydrogenation reaction over the titania catalyst was related to competition for the active sites between solvent and 4-phenyl-2-butanone.
A new approach for the preparation of well-defined Rh and Pt nanoparticles stabilized by phosphine-functionalized silica for selective hydrogenation reactions
Llop Castelbou,Szeto,Barakat,Merle,Godard,Taoufik,Claver
, p. 3261 - 3264 (2017)
In this work, a new methodology for the synthesis of well-defined metallic nanoparticles supported on silica is described. This methodology is based on the surface control provided by SOMC. The nanoparticles are formed via the organometallic approach and are catalytically active in the hydrogenation of p-xylene, 3-hexyne, 4-phenyl-2 butanone, benzaldehyde, and furfural.
A simple and highly effective method for hydrogenation of arenes by [Rh(COD)Cl]2
Wang, Da-Wei,Lu, Sheng-Mei,Zhou, Yong-Gui
, p. 1282 - 1285 (2009)
Hydrogenation of arenes, including chiral BINOLs and the lignin model compounds, has been achieved efficiently by using the simple complex [Rh(COD)Cl]2 as catalyst precursor.
A kinetic analysis methodology to elucidate the roles of metal, support and solvent for the hydrogenation of 4-phenyl-2-butanone over Pt/TiO2
Wilkinson,McManus,Daly,Thompson,Hardacre,Sedaie Bonab,Ten Dam,Simmons,D'Agostino,McGregor,Gladden,Stitt
, p. 362 - 373 (2015)
The rate and, more importantly, selectivity (ketone vs aromatic ring) of the hydrogenation of 4-phenyl-2-butanone over a Pt/TiO2 catalyst have been shown to vary with solvent. In this study, a fundamental kinetic model for this multi-phase reaction has been developed incorporating statistical analysis methods to strengthen the foundations of mechanistically sound kinetic models. A 2-site model was determined to be most appropriate, describing aromatic hydrogenation (postulated to be over a platinum site) and ketone hydrogenation (postulated to be at the platinum-titania interface). Solvent choice has little impact on the ketone hydrogenation rate constant but strongly impacts aromatic hydrogenation due to solvent-catalyst interaction. Reaction selectivity is also correlated to a fitted product adsorption constant parameter. The kinetic analysis method shown has demonstrated the role of solvents in influencing reactant adsorption and reaction selectivity.
Synthesis of chiral functionalised cyclobutylpyrrolidines and cyclobutylamino alcohols from (-)-(S)-verbenone - Applications in the stabilisation of ruthenium nanocatalysts
Aguilera, Jordi,Favier, Isabelle,Sans, Marta,Mor, lex,lvarez-Larena, ngel,Illa, Ona,Gmez, Montserrat,Ortuo, Rosa M.
, p. 810 - 819 (2015)
Stereoselective and efficient synthetic routes to pyrrolidines and amino alcohols anchored to chiral polysubstituted cyclobutane moieties have been developed from (-)-(S)-verbenone. These original frameworks, in particular the diamines and amino alcohols, are appropriate stabilisers of metallic nanoparticles, especially for the synthesis of ruthenium nanomaterials, which found catalytic applications in the hydrogenation of arenes and nitrobenzene derivatives to afford selectively the corresponding cyclohexane or aniline derivatives.
Organometallic Synthesis of Bimetallic Cobalt-Rhodium Nanoparticles in Supported Ionic Liquid Phases (CoxRh100?x@SILP) as Catalysts for the Selective Hydrogenation of Multifunctional Aromatic Substrates
Rengshausen, Simon,Van Stappen, Casey,Levin, Natalia,Tricard, Simon,Luska, Kylie L.,DeBeer, Serena,Chaudret, Bruno,Bordet, Alexis,Leitner, Walter
, (2020/12/22)
The synthesis, characterization, and catalytic properties of bimetallic cobalt-rhodium nanoparticles of defined Co:Rh ratios immobilized in an imidazolium-based supported ionic liquid phase (CoxRh100?x@SILP) are described. Following an organometallic approach, precise control of the Co:Rh ratios is accomplished. Electron microscopy and X-ray absorption spectroscopy confirm the formation of small, well-dispersed, and homogeneously alloyed zero-valent bimetallic nanoparticles in all investigated materials. Benzylideneacetone and various bicyclic heteroaromatics are used as chemical probes to investigate the hydrogenation performances of the CoxRh100?x@SILP materials. The Co:Rh ratio of the nanoparticles is found to have a critical influence on observed activity and selectivity, with clear synergistic effects arising from the combination of the noble metal and its 3d congener. In particular, the ability of CoxRh100?x@SILP catalysts to hydrogenate 6-membered aromatic rings is found to experience a remarkable sharp switch in a narrow composition range between Co25Rh75 (full ring hydrogenation) and Co30Rh70 (no ring hydrogenation).
Selective Hydrogenation and Hydrodeoxygenation of Aromatic Ketones to Cyclohexane Derivatives Using a Rh&at;SILP Catalyst
Bordet, Alexis,Emondts, Meike,Leitner, Walter,Moos, Gilles
supporting information, p. 11977 - 11983 (2020/06/02)
Rhodium nanoparticles immobilized on an acid-free triphenylphosphonium-based supported ionic liquid phase (Rh&at;SILP(Ph3-P-NTf2)) enabled the selective hydrogenation and hydrodeoxygenation of aromatic ketones. The flexible molecular approach used to assemble the individual catalyst components (SiO2, ionic liquid, nanoparticles) led to outstanding catalytic properties. In particular, intimate contact between the nanoparticles and the phosphonium ionic liquid is required for the deoxygenation reactivity. The Rh&at;SILP(Ph3-P-NTf2) catalyst was active for the hydrodeoxygenation of benzylic ketones under mild conditions, and the product distribution for non-benzylic ketones was controlled with high selectivity between the hydrogenated (alcohol) and hydrodeoxygenated (alkane) products by adjusting the reaction temperature. The versatile Rh&at;SILP(Ph3-P-NTf2) catalyst opens the way to the production of a wide range of high-value cyclohexane derivatives by the hydrogenation and/or hydrodeoxygenation of Friedel–Crafts acylation products and lignin-derived aromatic ketones.
Bimetallic Nanoparticles in Supported Ionic Liquid Phases as Multifunctional Catalysts for the Selective Hydrodeoxygenation of Aromatic Substrates
Offner-Marko, Lisa,Bordet, Alexis,Moos, Gilles,Tricard, Simon,Rengshausen, Simon,Chaudret, Bruno,Luska, Kylie L.,Leitner, Walter
supporting information, p. 12721 - 12726 (2018/09/12)
Bimetallic iron–ruthenium nanoparticles embedded in an acidic supported ionic liquid phase (FeRu@SILP+IL-SO3H) act as multifunctional catalysts for the selective hydrodeoxygenation of carbonyl groups in aromatic substrates. The catalyst material is assembled systematically from molecular components to combine the acid and metal sites that allow hydrogenolysis of the C=O bonds without hydrogenation of the aromatic ring. The resulting materials possess high activity and stability for the catalytic hydrodeoxygenation of C=O groups to CH2 units in a variety of substituted aromatic ketones and, hence, provide an effective and benign alternative to traditional Clemmensen and Wolff–Kishner reductions, which require stoichiometric reagents. The molecular design of the FeRu@SILP+IL-SO3H materials opens a general approach to multifunctional catalytic systems (MM′@SILP+IL-func).
Enhancing the Catalytic Properties of Ruthenium Nanoparticle-SILP Catalysts by Dilution with Iron
Luska, Kylie L.,Bordet, Alexis,Tricard, Simon,Sinev, Ilya,Grünert, Wolfgang,Chaudret, Bruno,Leitner, Walter
, p. 3719 - 3726 (2016/07/06)
The partial replacement of ruthenium by iron ("dilution") provided enhanced catalytic activities and selectivities for bimetallic iron-ruthenium nanoparticles immobilized on a supported ionic liquid phase (FeRuNPs@SILP). An organometallic synthetic approach to the preparation of FeRuNPs@SILP allowed for a controlled and flexible incorporation of Fe into bimetallic FeRu NPs. The hydrogenation of substituted aromatic substrates using bimetallic FeRuNPs@SILP showed high catalytic activities and selectivities for the reduction of a variety of unsaturated moieties without saturation of the aromatic ring. The formation of a bimetallic phase not only leads to an enhanced differentiation of the hydrogenation selectivity, but even reversed the order of functional group hydrogenation in certain cases. In particular, bimetallic FeRuNPs@SILP (Fe:Ru = 25:75) were found to exhibit accelerated reaction rates for C=O hydrogenation within furan-based substrates which were >4 times faster than monometallic RuNPs@SILP. Thus, the controlled incorporation of the non-noble metal into the bimetallic phase provided novel catalytic properties that could not be obtained using either of the monometallic catalysts.
Transition metal nanoparticles stabilized by ammonium salts of hyperbranched polystyrene: effect of metals on catalysis of the biphasic hydrogenation of alkenes and arenes
Gao, Lei,Kojima, Keisuke,Nagashima, Hideo
, p. 6414 - 6423 (2015/08/18)
Abstract Hyperbranched polystyrene bearing ammonium salts (HPS-NR3+Cl-) behaves as an excellent stabilizer of ruthenium, rhodium, iridium, palladium, and platinum nanoparticles from 1 to 3 nm in size uniformly dispersed in the polymer matrix. The catalytic performance of the resulting metal-polymer composites, M@HPS-NR3+Cl-, is dependent on the metal. This dependence was investigated by assessing the hydrogenation of alkenes and arenes. The utility of M@HPS-NR3+Cl- as reusable catalysts in aqueous/organic biphasic systems was demonstrated by examining the catalysis of the hydrogenation of aromatic compounds containing various functional groups by Ru@HPS-NR3+Cl-.