Welcome to LookChem.com Sign In|Join Free

CAS

  • or

1244-78-6

Post Buying Request

1244-78-6 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

1244-78-6 Usage

Definition

ChEBI: A tetramethoxyflavone that is the 5,7,3',4'-tetramethy-derivative of quercetin.

Check Digit Verification of cas no

The CAS Registry Mumber 1244-78-6 includes 7 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 4 digits, 1,2,4 and 4 respectively; the second part has 2 digits, 7 and 8 respectively.
Calculate Digit Verification of CAS Registry Number 1244-78:
(6*1)+(5*2)+(4*4)+(3*4)+(2*7)+(1*8)=66
66 % 10 = 6
So 1244-78-6 is a valid CAS Registry Number.
InChI:InChI=1/C19H18O7/c1-22-11-8-14(25-4)16-15(9-11)26-19(18(21)17(16)20)10-5-6-12(23-2)13(7-10)24-3/h5-9,21H,1-4H3

1244-78-6SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 14, 2017

Revision Date: Aug 14, 2017

1.Identification

1.1 GHS Product identifier

Product name quercetin 5,7,3',4'-tetramethyl ether

1.2 Other means of identification

Product number -
Other names 2-(3,4-dimethoxyphenyl)-3-hydroxy-5,7-dimethoxychromen-4-one

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:1244-78-6 SDS

1244-78-6Relevant articles and documents

-

Looker et al.

, p. 179,182 (1970)

-

-

Briggs,Locker

, p. 3131,3134 (1951)

-

Nitrogen-containing derivatives of O-tetramethylquercetin: Synthesis and biological profiles in prostate cancer cell models

Rajaram, Pravien,Jiang, Ziran,Chen, Guanglin,Rivera, Alyssa,Phasakda, Alison,Zhang, Qiang,Zheng, Shilong,Wang, Guangdi,Chen, Qiao-Hong

, p. 227 - 239 (2019)

Forty-eight nitrogen-containing quercetin derivatives were synthesized from readily available rutin or quercetin for the in vitro evaluation of their biological profiles. The WST-1 cell proliferation assay data indicate that thirty-nine out of the forty-eight derivatives possess significantly improved antiproliferative potency as compared with quercetin and fisetin, as well as the parent 3,3′,4′,7-O-tetramethylquercetin toward both androgen-sensitive (LNCaP) and androgen-insensitive (PC-3 and DU145) human prostate cancer cell lines. 5-O-Aminoalkyl-3,3′,4′,7-O-tetramethylquercetins were established as a better scaffold for further development as anti-prostate cancer agents. Among them, 5-O-(N,N-dibutylamino)propyl-3,3′,4′,7-O-tetramethylquercetin (44) was identified as the optimal derivative with IC50 values of 0.55–2.82 μM, being over 35–182 times more potent than quercetin. The flow cytometry-based assays further demonstrate that 44 effectively activates PC-3 cell apoptosis.

Design and synthesis of the 4H-chromenone derivatives against psoriasis

Du, Jun Cheng,Han, Xu,Liu, Xin Hua,Yan, Yaoyao,Zhang, Famin,Zhu, Rende

, (2022/02/03)

On basis of Quercetin moiety, two series of 20 new compounds were designed and synthesized accordingly in this study, and their anti-inflammatory activities in vitro and in vivo were evaluated. At last, compound 8A2: 3- (1- (2- (4- (5-bromo-2-chlorobenzoyl) piperazin-1-yl) ethyl)-1H-1,2,3-triazol-4-yl) methoxy)-5,7-dimethoxy-2-(3,4,5-trimethoxyphenyl)-4H-chromen-4-one with low toxicity was found the best one for inhibiting of NO. Meanwhile, this compound could significantly inhibit the expression of IL-6 (Interleukin-6), TNF-α (Tumor necrosis factor-α) and IL-17 (Interleukin-17), and also significantly down-regulate IL-17 mRNA psoriasis model in vitro. Further studies were performed to establish mouse psoriasis model induced by Imiquimod (IMQ), and the preliminary mechanism indicated that compound 8A2 may alleviate mouse psoriasis through obstructed the JAK1/2-STAT1/3 pathway. This study should be provide a basis for further study of effective treatment of psoriasis.

Pharmacokinetics and Metabolites of 12 Bioactive Polymethoxyflavones in Rat Plasma

Chen, Hongping,Ding, Haiyan,Hu, Yuan,Li, Dan,Liu, Youping,You, Qiang

, p. 12705 - 12716 (2021/11/17)

Polymethoxyflavones (PMFs) are a subgroup of flavonoids possessing various health benefits. 3,5,7,4′-Tetramethoxyflavone (1), 5,6,7,4′-tetramethylflavone (2), 3,7,3′,4′-tetramethoxyflavone (3), 5,7,3′,4′-tetramethoxyflavone (4), 5-hydroxy-3,7,2′,4′-tetramethoxyflavone (5), 3,5,7,2′,4′-pentamethoxyflavone (6), 5-hydroxy-3,7,3′,4′-tetramethoxyflavone (7), 3-hydroxy-5,7,3′,4′-tetramethylflavone (8), 3,5,7,3′,4′-pentamethoxyflavone (9), 5-hydroxy-3,7,3′,4′,5′-pentamethoxyflavone (10), 3-hydroxy-5,7,3′,4′,5′-pentamethoxyflavone (11), and 3,5,7,3′,4′,5′-hexamethoxylflavone (12) were 12 bioactive and available PMFs. The aim of this study was to investigate the pharmacokinetic, metabolite, and antitumor activities as well as the structure-pharmacokinetic-antitumor activity relationships of these 12 PMFs to facilitate further studies of their medicinal potentials. The cytotoxicity of PMFs with a hydroxy group toward HeLa, A549, HepG2, and HCT116 cancer cell lines was generally significantly more potent than that of PMFs without a hydroxy group. Compounds 5, 7, 8, 10, and 11 were all undetectable in rat plasma, while compounds 1-4, 6, 9, and 12 were detectable. Both the number and position of hydroxy and methoxy groups played an important role in modulating PMF pharmacokinetics and metabolites.

Synthesis of Flavonols via Pyrrolidine Catalysis: Origins of the Selectivity for Flavonol versus Aurone

Xiong, Wei,Wang, Xiaohong,Shen, Xianyan,Hu, Cuifang,Wang, Xin,Wang, Fei,Zhang, Guolin,Wang, Chun

supporting information, p. 13160 - 13176 (2020/11/23)

A novel synthetic method for flavonol from 2′-hydroxyl acetophenone and benzaldehyde promoted by pyrrolidine under an aerobic condition in water is established. This protocol was supported by efficient synthesis of 44 common examples and three natural products. The α, β-unsaturated iminium ion (enimine ion E) was proved to be the key intermediate in the reaction. H218O and 18O2 isotope tracking experiments demonstrated that both water and the aerobic atmosphere were necessary to ensure the transformation. The selectivity for flavonol or aurone was originated from solvent-triggered intermediates, which were determined by UV-visible spectra from isolated enimine. The phenol-iminium E-A is dominant in water and the ketoenamine intermediate E-B is prevalent in acetonitrile. In the presence of pyrrolidine and oxygen, E-A leads to flavonol through E-I, a zwitterionic-like phenoloxyl-iminium ion, following the key steps of cyclization and a [2 + 2] oxidation; E-B proceeds through path II, a radical process induced by photolysis of E-B with both pyrrolidine and oxygen, to afford aurone. Preliminary mechanistic studies are reported.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 1244-78-6