Welcome to LookChem.com Sign In|Join Free

CAS

  • or

16375-88-5

Post Buying Request

16375-88-5 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

16375-88-5 Usage

Chemical Properties

White to off-white powder

Check Digit Verification of cas no

The CAS Registry Mumber 16375-88-5 includes 8 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 5 digits, 1,6,3,7 and 5 respectively; the second part has 2 digits, 8 and 8 respectively.
Calculate Digit Verification of CAS Registry Number 16375-88:
(7*1)+(6*6)+(5*3)+(4*7)+(3*5)+(2*8)+(1*8)=125
125 % 10 = 5
So 16375-88-5 is a valid CAS Registry Number.
InChI:InChI=1/C9H11NO2/c1-7(12)10-9-4-2-8(6-11)3-5-9/h2-5,11H,6H2,1H3,(H,10,12)

16375-88-5 Well-known Company Product Price

  • Brand
  • (Code)Product description
  • CAS number
  • Packaging
  • Price
  • Detail
  • Alfa Aesar

  • (H33454)  4-Acetamidobenzyl alcohol, 97%   

  • 16375-88-5

  • 1g

  • 594.0CNY

  • Detail
  • Alfa Aesar

  • (H33454)  4-Acetamidobenzyl alcohol, 97%   

  • 16375-88-5

  • 5g

  • 1984.0CNY

  • Detail

16375-88-5SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 10, 2017

Revision Date: Aug 10, 2017

1.Identification

1.1 GHS Product identifier

Product name 4-Acetamidobenzyl alcohol

1.2 Other means of identification

Product number -
Other names N-[4-(hydroxymethyl)phenyl]acetamide

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:16375-88-5 SDS

16375-88-5Relevant articles and documents

Chemoselective reduction of nitroarenes, N-acetylation of arylamines, and one-pot reductive acetylation of nitroarenes using carbon-supported palladium catalytic system in water

Zeynizadeh, Behzad,Mohammad Aminzadeh, Farkhondeh,Mousavi, Hossein

, p. 3289 - 3312 (2021/05/11)

Developing and/or modifying fundamental chemical reactions using chemical industry-favorite heterogeneous recoverable catalytic systems in the water solvent is very important. In this paper, we developed convenient, green, and efficient approaches for the chemoselective reduction of nitroarenes, N-acetylation of arylamines, and one-pot reductive acetylation of nitroarenes in the presence of the recoverable heterogeneous carbon-supported palladium (Pd/C) catalytic system in water. The utilize of the simple, effective, and recoverable catalyst and also using of water as an entirely green solvent along with relatively short reaction times and good-to-excellent yields of the desired products are some of the noticeable features of the presented synthetic protocols. Graphic abstract: [Figure not available: see fulltext.].

Visible Light-Induced Amide Bond Formation

Song, Wangze,Dong, Kun,Li, Ming

supporting information, p. 371 - 375 (2019/11/29)

A metal-, base-, and additive-free amide bond formation reaction was developed under an organic photoredox catalyst. This green approach showed excellent functional selectivity without affecting other functional groups such as alcohols, phenols, ethers, esters, halogens, or heterocycles. This method featured a broad substrate scope, good compatibility with water and air, and high yields (≤95%). The potential utilities were demonstrated by the synthesis of important drug molecules such as paracetamol, melatonin, moclobemide, and acetazolamide.

Dehydrogenative Coupling of Aldehydes with Alcohols Catalyzed by a Nickel Hydride Complex

Eberhardt, Nathan A.,Wellala, Nadeesha P. N.,Li, Yingze,Krause, Jeanette A.,Guan, Hairong

, p. 1468 - 1478 (2019/04/17)

A nickel hydride complex, {2,6-(iPr2PO)2C6H3}NiH, has been shown to catalyze the coupling of RCHO and R′OH to yield RCO2R′ and RCH2OH, where the aldehyde also acts as a hydrogen acceptor and the alcohol also serves as the solvent. Functional groups tolerated by this catalytic system include CF3, NO2, Cl, Br, NHCOMe, and NMe2, whereas phenol-containing compounds are not viable substrates or solvents. The dehydrogenative coupling reaction can alternatively be catalyzed by an air-stable nickel chloride complex, {2,6-(iPr2PO)2C6H3}NiCl, in conjunction with NaOMe. Acids in unpurified aldehydes react with the hydride to form nickel carboxylate complexes, which are catalytically inactive. Water, if present in a significant quantity, decreases the catalytic efficiency by forming {2,6-(iPr2PO)2C6H3}NiOH, which causes catalyst degradation. On the other hand, in the presence of a drying agent, {2,6-(iPr2PO)2C6H3}NiOH generated in situ from {2,6-(iPr2PO)2C6H3}NiCl and NaOH can be converted to an alkoxide species, becoming catalytically competent. The proposed catalytic mechanism features aldehyde insertion into the nickel hydride as well as into a nickel alkoxide intermediate, both of which have been experimentally observed. Several mechanistically relevant nickel species including {2,6-(iPr2PO)2C6H3}NiOC(O)Ph, {2,6-(iPr2PO)2C6H3}NiOPh, and {2,6-(iPr2PO)2C6H3}NiOPh·HOPh have been independently synthesized, crystallographically characterized, and tested for the catalytic reaction. While phenol-containing molecules cannot be used as substrates or solvents, both {2,6-(iPr2PO)2C6H3}NiOPh and {2,6-(iPr2PO)2C6H3}NiOPh·HOPh are efficient in catalyzing the dehydrogenative coupling of PhCHO with EtOH.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 16375-88-5