1678-82-6Relevant articles and documents
Heterogeneous supramolecular catalysis through immobilization of anionic M4L6assemblies on cationic polymers
Miyamura, Hiroyuki,Bergman, Robert G.,Raymond, Kenneth N.,Toste, F. Dean
, p. 19327 - 19338 (2020)
Although most of the currently developed supramolecular catalysts that emulate enzymatic reactivity with unique selectivity and activity through specific host-guest interactions work under homogeneous conditions, enzymes in nature can operate under heterogeneous conditions as membrane-bound enzymes. In order to develop such a heterogeneous system, an immobilized chiral supramolecular cluster Ga416 (2) was introduced into cross-linked polymers with cationic functionalities. These heterogeneous supramolecular catalysts were used in aza-Prins and aza-Cope reactions and successfully applied to continuous-flow reactions. They showed high durability and maintained high turnovers for long periods of time. In sharp contrast to the majority of examples of heterogenized homogeneous catalysts, the newly developed catalysts showed enhanced activity and robustness compared to those exhibited by the corresponding soluble cluster catalyst. An enantioenriched cluster was also immobilized to enable asymmetric catalysis, and activity and enantioselectivity of the supported chiral catalyst were maintained during recovery and reuse experiments and under a continuous-flow process. Significantly, the structure of the ammonium cations in the polymers affected stability, reactivity, and enantioselectivity, which is consistent with the hypothesis that the cationic moieties in the polymer support interact with cluster as an exohedral protecting shell, thereby influencing their catalytic performance.
Metal vapor synthesis of ultrasmall Pd nanoparticles functionalized with N-heterocyclic carbenes
Tegeder, Patricia,Marelli, Marcello,Freitag, Matthias,Polito, Laura,Lamping, Sebastian,Psaro, Rinaldo,Glorius, Frank,Ravoo, Bart Jan,Evangelisti, Claudio
, p. 12647 - 12651 (2018)
The synthesis of N-heterocyclic carbene (NHC)-stabilized palladium nanoparticles (PdNPs) by an entirely new strategy comprising the NHC functionalization of ligand-free PdNPs obtained by metal vapor synthesis is described. Detailed characterization confirms the formation of very small monodisperse PdNPs (2.3 nm) and the presence of the NHC ligand on the Pd surface. The stable NHC-functionalized PdNPs dispersed onto a carbon support showed high activity in the hydrogenation of limonene with enhanced regioselectivity in comparison to bare PdNPs on carbon.
Continuous synthesis of menthol from citronellal and citral over Ni-beta-zeolite-sepiolite composite catalyst
Er?nen, Kari,M?ki-Arvela, P?ivi,Martinez-Klimov, Mark,Muller, Joseph,Murzin, Dmitry Yu.,Peurla, Markus,Simakova, Irina,Vajglova, Zuzana
, (2022/04/03)
One-pot continuous synthesis of menthols both from citronellal and citral was investigated over 5 wt% Ni supported on H-Beta-38-sepiolite composite catalyst at 60–70 °C under 10–29 bar hydrogen pressure. A relatively high menthols yield of 53% and 49% and stereoselectivity to menthol of 71–76% and 72–74% were obtained from citronellal and citral respectively at the contact time 4.2 min, 70 °C and 20 bar. Citral conversion noticeably decreased with time-on-stream under 10 and 15 bar of hydrogen pressure accompanied by accumulation of citronellal, the primary hydrogenation product of citral, practically not affecting selectivity to menthol. A substantial amount of defuctionalization products observed during citral conversion, especially at the beginning of the reaction (ca. 1 h), indicated that all intermediates could contribute to formation of menthanes. Ni/H-Beta-38-sepiolite composite material prepared by extrusion was characterized by TEM, SEM, XPS, XRD, ICP-OES, N2 physisorption and FTIR techniques to perceive the interrelation between the physico-chemical and catalytic properties.
Nickel-catalyzed reductive 1,3-diene formation from the cross-coupling of vinyl bromides
Sha, Yunfei,Liu, Jiandong,Wang, Liang,Liang, Demin,Wu, Da,Gong, Hegui
supporting information, p. 4887 - 4890 (2021/06/16)
Facile construction of 1,3-dienes building upon cross-electrophile coupling of two open-chain vinyl halides is disclosed in this work, showing moderate chemoselectivities between the terminal bromoalkenes and internal vinyl bromides. The present method is mild and tolerates a range of functional groups and can be applied to the total synthesis of a tobacco fragrance solanone.
Nanocomposite Hydrogel of Pd@ZIF-8 and Laponite: Size-Selective Hydrogenation Catalyst under Mild Conditions
Sutar, Papri,Bakuru, Vasudeva Rao,Yadav, Pooja,Laha, Subhajit,Kalidindi, Suresh Babu,Maji, Tapas Kumar
supporting information, p. 3268 - 3272 (2021/01/21)
The composite hydrogel of a nanoscale metal–organic framework (NMOF) and nanoclay has emerged as a new soft-material with advanced properties and applications. Herein, we report a facile synthesis of a hydrogel nanocomposite by charge-assisted self-assembly of Pd@ZIF-8 nanoparticles with Laponite nanoclay which coat the surface of Pd@ZIF-8 nanoparticles. Such surface coating significantly enhanced the thermal stability of the ZIF-8 compared to the pristine framework. Further, the Pd@ZIF-8+LP hydrogel nanocomposite shows better size-selective catalytic hydrogenation of olefins than Pd@ZIF-8 nanoparticles based on selective diffusion of the substrate.
RhNPs supported onN-functionalized mesoporous silica: effect on catalyst stabilization and catalytic activity
Pulido-Díaz, Israel T.,Serrano-Maldonado, Alejandro,López-Suárez, Carlos César,Méndez-Ocampo, Pedro A.,Portales-Martínez, Benjamín,Gutiérrez-Alejandre, Aída,Salas-Martin, Karla P.,Guerrero-Ríos, Itzel
, p. 3289 - 3298 (2021/03/16)
Amine and nicotinamide groups grafted on ordered mesoporous silica (OMS) were investigated as stabilizers for RhNPs used as catalysts in the hydrogenation of several substrates, including carbonyl and aryl groups. Supported RhNPs on functionalized OMS were prepared by controlled decomposition of an organometallic precursor of rhodium under dihydrogen pressure. The resulting materials were characterized thoroughly by spectroscopic and physical techniques (FTIR, TGA, BET, SEM, TEM, EDX, XPS) to confirm the formation of spherical rhodium nanoparticles with a narrow size distribution supported on the silica surface. The use of nicotinamide functionalized OMS as a support afforded small RhNPs (2.3 ± 0.3 nm), and their size and shape were maintained after the catalyzed acetophenone hydrogenation. In contrast, amine-functionalized OMS formed RhNP aggregates after the catalytic reaction. The supported RhNPs could selectively reduce alkenyl, carbonyl, aryl and heteroaryl groups and were active in the reductive amination of phenol and morpholine, using a low concentration of the precious metal (0.07-0.18 mol%).
Chemoselective and Tandem Reduction of Arenes Using a Metal–Organic Framework-Supported Single-Site Cobalt Catalyst
Akhtar, Naved,Begum, Wahida,Chauhan, Manav,Manna, Kuntal,Newar, Rajashree,Rawat, Manhar Singh
supporting information, (2022/01/19)
The development of heterogeneous, chemoselective, and tandem catalytic systems using abundant metals is vital for the sustainable synthesis of fine and commodity chemicals. We report a robust and recyclable single-site cobalt-hydride catalyst based on a porous aluminum metal–organic framework (DUT-5 MOF) for chemoselective hydrogenation of arenes. The DUT-5 node-supported cobalt(II) hydride (DUT-5-CoH) is a versatile solid catalyst for chemoselective hydrogenation of a range of nonpolar and polar arenes, including heteroarenes such as pyridines, quinolines, isoquinolines, indoles, and furans to afford cycloalkanes and saturated heterocycles in excellent yields. DUT-5-CoH exhibited excellent functional group tolerance and could be reusable at least five times without decreased activity. The same MOF-Co catalyst was also efficient for tandem hydrogenation–hydrodeoxygenation of aryl carbonyl compounds, including biomass-derived platform molecules such as furfural and hydroxymethylfurfural to cycloalkanes. In the case of hydrogenation of cumene, our spectroscopic, kinetic, and density functional theory (DFT) studies suggest the insertion of a trisubstituted alkene intermediate into the Co–H bond occurring in the turnover limiting step. Our work highlights the potential of MOF-supported single-site base–metal catalysts for sustainable and environment-friendly industrial production of chemicals and biofuels.
Acidic metal-organic framework empowered precise hydrodeoxygenation of bio-based furan compounds and cyclic ethers for sustainable fuels
Gao, Xiang-Yu,He, Hai-Long,Li, Zhi,Liu, Dong-Huang,Wang, Jun-Jie,Xiao, Yao,Yi, Xianfeng,Zeng, Tengwu,Zhang, Yue-Biao,Zheng, Anmin,Zhou, Si-Yu
supporting information, p. 9974 - 9981 (2021/12/27)
Target synthesis of hydrocarbons from abundant biomass is highly desired for sustainable aviation fuels (SAFs) to meet the need for both net zero carbon emission and air pollution control. However, precise hydrodeoxygenation (PHDO) of bio-based furan compounds and cyclic ethers to isomerically pure alkanes remains a challenge in heterogenous catalysis, which usually requires delicate control of the distribution of acid and metal catalytic sites in nanoconfined space. Here we show that a nanoporous acidic metal-organic framework (MOF), namely MIL-101-SO3H, enables one-pot PHDO reactions from furan-derivative oxygenates to solely single-component alkanes by just mechanical mixing with commercial Pd/C towards highly efficient and highly selective hydrocarbon production. The superior performance of such tandem catalysts can be attributed to the preferential adsorption of oxygenate precursors and expulsion of deoxygenated intermediates benefiting from Lewis acid sites embedded in the MOF. The strong Br?nsted acidity of MIL-101-SO3H is contributed by both the -SO3H groups and the adsorbed H2O, which makes it a water-tolerant solid acid for durable PHDO processes. The simplicity of mechanical mixing of different heterogenous catalysts allows the modulation of the tandem catalysis system for optimization of the ultimate catalytic performance. This journal is
STRONGLY LEWIS ACIDIC METAL-ORGANIC FRAMEWORKS FOR CONTINUOUS FLOW CATALYSIS
-
Paragraph 0166; 0170, (2021/02/26)
Lewis acidic metal-organic framework (MOF) materials comprising triflate-coordinated metal nodes are described. The materials can be used as heterogenous catalysts in a wide range of organic group transformations, including Diels-Alder reactions, epoxide-ring opening reactions, Friedel-Crafts acylation reactions and alkene hydroalkoxylation reactions. The MOFs can also be prepared with metallated organic bridging ligands to provide heterogenous catalysts for tandem reactions and/or prepared as composites with support particles for use in columns of continuous flow reactor systems. Methods of preparing and using the MOF materials and their composites are also described.
Heterogeneous Hydroxyl-Directed Hydrogenation: Control of Diastereoselectivity through Bimetallic Surface Composition
Shumski, Alexander J.,Swann, William A.,Escorcia, Nicole J.,Li, Christina W.
, p. 6128 - 6134 (2021/05/29)
Directed hydrogenation, in which product selectivity is dictated by the binding of an ancillary directing group on the substrate to the catalyst, is typically catalyzed by homogeneous Rh and Ir complexes. No heterogeneous catalyst has been able to achieve equivalently high directivity due to a lack of control over substrate binding orientation at the catalyst surface. In this work, we demonstrate that Pd-Cu bimetallic nanoparticles with both Pd and Cu atoms distributed across the surface are capable of high conversion and diastereoselectivity in the hydroxyl-directed hydrogenation reaction of terpinen-4-ol. We postulate that the OH directing group adsorbs to the more oxophilic Cu atom while the olefin and hydrogen bind to adjacent Pd atoms, thus enabling selective delivery of hydrogen to the olefin from the same face as the directing group with a 16:1 diastereomeric ratio.