Welcome to LookChem.com Sign In|Join Free

CAS

  • or

19190-80-8

Post Buying Request

19190-80-8 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

19190-80-8 Usage

Check Digit Verification of cas no

The CAS Registry Mumber 19190-80-8 includes 8 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 5 digits, 1,9,1,9 and 0 respectively; the second part has 2 digits, 8 and 0 respectively.
Calculate Digit Verification of CAS Registry Number 19190-80:
(7*1)+(6*9)+(5*1)+(4*9)+(3*0)+(2*8)+(1*0)=118
118 % 10 = 8
So 19190-80-8 is a valid CAS Registry Number.
InChI:InChI=1/C10H10O3/c1-12-10(11)9-8(13-9)7-5-3-2-4-6-7/h2-6,8-9H,1H3

19190-80-8SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 16, 2017

Revision Date: Aug 16, 2017

1.Identification

1.1 GHS Product identifier

Product name trans-methyl 3-phenylglycidate

1.2 Other means of identification

Product number -
Other names methyl 2,3-epoxy-3-phenylpropionate

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:19190-80-8 SDS

19190-80-8Relevant articles and documents

Epoxidation of Alkenes with Molecular Oxygen as the Oxidant in the Presence of Nano-Al 2O 3

Zhou, Xuan,Wang, Qiong,Xiong, Wenfang,Wang, Lu,Ye, Rongkai,Xiang, Ge,Qi, Chaorong,Hu, Jianqiang

supporting information, p. 1789 - 1794 (2020/09/18)

The nano-Al 2O 3-promoted epoxidation of alkenes with molecular oxygen as the oxidant has been developed, providing an efficient route to a variety of epoxides in moderate to excellent yields. The environmentally friendly and efficient nano-Al 2O 3catalyst could be easily recovered and reused five times without significant loss of activity.

SO2F2-Mediated Epoxidation of Olefins with Hydrogen Peroxide

Ai, Chengmei,Zhu, Fuyuan,Wang, Yanmei,Yan, Zhaohua,Lin, Sen

, p. 11928 - 11934 (2019/10/02)

An inexpensive, mild, and highly efficient epoxidation protocol has been developed involving bubbling SO2F2 gas into a solution of olefin, 30% aqueous hydrogen peroxide, and 4 N aqueous potassium carbonate in 1,4-dioxane at room temperature for 1 h with the formation of the corresponding epoxides in good to excellent yields. The novel SO2F2/H2O2/K2CO3 epoxidizing system is suitable to a variety of olefinic substrates including electron-rich and electron-deficient ones.

Enantiomeric resolution, thermodynamic parameters, and modeling of clausenamidone and neoclausenamidone on polysaccharide-based chiral stationary phases

Luo, Xuna,Fang, Chengqiao,Mi, Junru,Xu, Jingzi,Lin, Hansen

, p. 423 - 433 (2019/05/07)

The aim of the paper is to describe a new synthesis route to obtain synthetic optically active clausenamidone and neoclausenamidone and then use high-performance liquid chromatography (HPLC) to determine the optical purities of these isomers. In the process, we investigated the different chromatographic conditions so as to provide the best separation method. At the same time, a thermodynamic study and molecular simulations were also carried out to validate the experimental results; a brief probe into the separation mechanism was also performed. Two chiral stationary phases (CSPs) were compared with separate the enantiomers. Elution was conducted in the organic mode with n-hexane and iso-propanol (IPA) (80/20?v/v) as the mobile phases; the enantiomeric excess (ee) values of the synthetic R-clausenamidone and S-clausenamidone and R-neoclausenamidone and S- neoclausenamidone were higher than 99.9%, and the enantiomeric ratio (er) values of these isomers were 100:0. Enantioselectivity and resolution (α and Rs, respectively) levels with values ranging from 1.03 to 1.99 and from 1.54 to 17.51, respectively, were achieved. The limits of detection and quantitation were 3.6 to 12.0 and 12.0 to 40.0 ug/mL, respectively. In addition, the thermodynamics study showed that the result of the mechanism of chiral separation was enthalpically controlled at a temperature ranging from 288.15 to 308.15?K. Furthermore, docking modeling showed that the hydrogen bonds and π-π interactions were the major forces for chiral separation. The present chiral HPLC method will be used for the enantiomeric resolution of the clausenamidone derivatives.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 19190-80-8