Welcome to LookChem.com Sign In|Join Free

CAS

  • or
(-)-α-Methyl-dibenzylamin is a chemical with a specific purpose. Lookchem provides you with multiple data and supplier information of this chemical.

19302-20-6 Suppliers

Post Buying Request

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier
  • 19302-20-6 Structure
  • Basic information

    1. Product Name: (-)-α-Methyl-dibenzylamin
    2. Synonyms:
    3. CAS NO:19302-20-6
    4. Molecular Formula:
    5. Molecular Weight: 211.307
    6. EINECS: N/A
    7. Product Categories: N/A
    8. Mol File: 19302-20-6.mol
  • Chemical Properties

    1. Melting Point: N/A
    2. Boiling Point: N/A
    3. Flash Point: N/A
    4. Appearance: N/A
    5. Density: N/A
    6. Refractive Index: N/A
    7. Storage Temp.: N/A
    8. Solubility: N/A
    9. CAS DataBase Reference: (-)-α-Methyl-dibenzylamin(CAS DataBase Reference)
    10. NIST Chemistry Reference: (-)-α-Methyl-dibenzylamin(19302-20-6)
    11. EPA Substance Registry System: (-)-α-Methyl-dibenzylamin(19302-20-6)
  • Safety Data

    1. Hazard Codes: N/A
    2. Statements: N/A
    3. Safety Statements: N/A
    4. WGK Germany:
    5. RTECS:
    6. HazardClass: N/A
    7. PackingGroup: N/A
    8. Hazardous Substances Data: 19302-20-6(Hazardous Substances Data)

19302-20-6 Usage

Check Digit Verification of cas no

The CAS Registry Mumber 19302-20-6 includes 8 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 5 digits, 1,9,3,0 and 2 respectively; the second part has 2 digits, 2 and 0 respectively.
Calculate Digit Verification of CAS Registry Number 19302-20:
(7*1)+(6*9)+(5*3)+(4*0)+(3*2)+(2*2)+(1*0)=86
86 % 10 = 6
So 19302-20-6 is a valid CAS Registry Number.

19302-20-6Relevant articles and documents

Cross-linked cyclodextrins bimetallic nanocatalysts: Applications in microwave-assisted reductive aminations

Acciardo, Elisa,Cravotto, Giancarlo,Gaudino, Emanuela Calcio,Manzoli, Maela,Tabasso, Silvia,Varma, Rajender S.

, (2020)

The optimization of sustainable protocols for reductive amination has been a lingering challenge in green synthesis. In this context, a comparative study of different metal-loaded cross-linked cyclodextrins (CDs) were examined for the microwave (MW)-assisted reductive amination of aldehydes and ketones using either H2 or formic acid as a hydrogen source. The Pd/Cu heterogeneous nanocatalyst based on Pd (II) and Cu (I) salts embedded in a β-CD network was the most efficient in terms of yield and selectivity attained. In addition, the polymeric cross-linking avoided metal leaching, thus enhancing the process sustainability; good yields were realized using benzylamine under H2. These interesting findings were then applied to the MW-assisted one-pot synthesis of secondary amines via a tandem reductive amination of benzaldehyde with nitroaromatics under H2 pressure. The formation of a CuxPdy alloy under reaction conditions was discerned, and a synergic effect due to the cooperation between Cu and Pd has been hypothesized. During the reaction, the system worked as a bifunctional nanocatalyst wherein the Pd sites facilitate the reduction of nitro compounds, while the Cu species promote the subsequent imine hydrogenation affording structurally diverse secondary amines with high yields.

Switching Selectivity in Copper-Catalyzed Transfer Hydrogenation of Nitriles to Primary Amine-Boranes and Secondary Amines under Mild Conditions

Song, Hao,Xiao, Yao,Zhang, Zhuohua,Xiong, Wanjin,Wang, Ren,Guo, Liangcheng,Zhou, Taigang

, p. 790 - 800 (2022/01/11)

A simple and efficient copper-catalyzed selective transfer hydrogenation of nitriles to primary amine-boranes and secondary amines with an oxazaborolidine-BH3 complex is reported. The selectivity control was achieved under mild conditions by switching the solvent and the copper catalysts. More than 30 primary amine-boranes and 40 secondary amines were synthesized via this strategy in high selectivity and yields of up to 95%. The strategy was applied to the synthesis of 15N labeled in 89% yield.

Hydrosilylation and Mukaiyama aldol-type reaction of quinolines and hydrosilylation of imines catalyzed by a mesoionic carbene-stabilized borenium ion

Bestvater, Brian P.,Clarke, Joshua J.,Crudden, Cathleen M.,DeJesus, Joseph F.,Devaraj, Karthik,Eisenberger, Patrick,Kojima, Ryoto

supporting information, p. 6786 - 6791 (2021/08/20)

Aldimines and ketimines containing electron-donating and electron-withdrawing groups can be hydrosilylated with borenium catalysts at as low as 1 mol% catalyst loading at room temperature, providing the corresponding secondary amines in excellent yields. Reactions with 2-phenylquinoline gave the 1,4-hydrosilylquinoline product selectively which can be further functionalized in a one-pot synthesis to give unique γ-amino alcohol derivatives. Control experiments suggest that the borenium ion catalyzes both the hydrosilylation and subsequent addition to the aldehyde.

Cleavage∕cross-coupling strategy for converting β-O-4 linkage lignin model compounds into high valued benzyl amines via dual C–O bond cleavage

Jia, Le,Li, Chao-Jun,Zeng, Huiying

, (2021/10/29)

Lignin is the most recalcitrant of the three components of lignocellulosic biomass. The strength and stability of the linkages have long been a great challenge for the degradation and valorization of lignin biomass to obtain bio-fuels and commercial chemicals. Up to now, the selective cleavage of C–O linkages of lignin to afford chemicals contains only C, H and O atoms. Our group has developed a cleavage/cross-coupling strategy for converting 4-O-5 linkage lignin model compounds into high value-added compounds. Herein, we present a palladium-catalyzed cleavage/cross-coupling of the β-O-4 lignin model compounds with amines via dual C–O bond cleavage for the preparation of benzyl amine compounds and phenols.

Copper-catalyzed enantioselective carbonylation toward α-chiral secondary amides

Wu, Xiao-Feng,Yuan, Yang,Zhao, Fengqian

, p. 12676 - 12681 (2021/10/19)

Secondary amides are omnipresent structural motifs in peptides, natural products, pharmaceuticals, and agrochemicals. The copper-catalyzed enantioselective hydroaminocarbonylation of alkenes described in this study provides a direct and practical approach for the construction of α-chiral secondary amides. An electrophilic amine transfer reagent possessing a 4-(dimethylamino)benzoate group was the key to the success. This method also features broad functional group tolerance and proceeds under very mild conditions, affording a set of α-chiral secondary amides in high yields (up to 96% yield) with unprecedented levels of enantioselectivity (up to >99% ee). α,β-Unsaturated secondary amides can also be produced though the method by using alkynes as the substrate.

Highly economical and direct amination of sp3carbon using low-cost nickel pincer catalyst

Brandt, Andrew,Rangumagar, Ambar B.,Szwedo, Peter,Wayland, Hunter A.,Parnell, Charlette M.,Munshi, Pradip,Ghosh, Anindya

, p. 1862 - 1874 (2021/01/20)

Developing more efficient routes to achieve C-N bond coupling is of great importance to industries ranging from products in pharmaceuticals and fertilizers to biomedical technologies and next-generation electroactive materials. Over the past decade, improvements in catalyst design have moved synthesis away from expensive metals to newer inexpensive C-N cross-coupling approaches via direct amine alkylation. For the first time, we report the use of an amide-based nickel pincer catalyst (1) for direct alkylation of amines via activation of sp3 C-H bonds. The reaction was accomplished using a 0.2 mol% catalyst and no additional activating agents other than the base. Upon optimization, it was determined that the ideal reaction conditions involved solvent dimethyl sulfoxide at 110 °C for 3 h. The catalyst demonstrated excellent reactivity in the formation of various imines, intramolecularly cyclized amines, and substituted amines with a turnover number (TON) as high as 183. Depending on the base used for the reaction and the starting amines, the catalyst demonstrated high selectivity towards the product formation. The exploration into the mechanism and kinetics of the reaction pathway suggested the C-H activation as the rate-limiting step, with the reaction second-order overall, holding first-order behavior towards the catalyst and toluene substrate.

Efficient One-Pot Reductive Aminations of Carbonyl Compounds with Aquivion-Fe as a Recyclable Catalyst and Sodium Borohydride

Airoldi, Veronica,Piccolo, Oreste,Roda, Gabriella,Appiani, Rebecca,Bavo, Francesco,Tassini, Riccardo,Paganelli, Stefano,Arnoldi, Sebastiano,Pallavicini, Marco,Bolchi, Cristiano

supporting information, p. 162 - 168 (2019/12/11)

A one-pot reductive amination of aldehydes and ketones with NaBH4 was developed with a view to providing efficient, economical and greener synthetic conditions. A recyclable iron-based Lewis catalyst, Aquivion-Fe, was used to promote imine formation in cyclopentyl methyl ether, followed by the addition of a small amount of methanol to the reaction mixture to enable C=N reduction by NaBH4. The protocol, applied to a wide number of amines and carbonyl compounds, resulted in ever complete conversion of these latter with excellent chemoselectivity towards the expected amination products in the most cases. Isolated yields, determined for a selection of the screened substrates, were found consistent with the previously obtained conversion and selectivity data. Cinacalcet, an important active pharmaceutical ingredient, was efficiently prepared by the title procedure.

Phyllosilicate-derived Nickel-cobalt Bimetallic Nanoparticles for the Catalytic Hydrogenation of Imines, Oximes and N-heteroarenes

Ciotonea, Carmen,Hammi, Nisrine,Dhainaut, Jérémy,Marinova, Maya,Ungureanu, Adrian,El Kadib, Abdelkrim,Michon, Christophe,Royer, Sébastien

, p. 4652 - 4663 (2020/08/19)

The development of cost-effective, noble metal-free catalytic systems for the hydrogenation of unsaturated aliphatic, aromatic, and heterocyclic compounds is fundamental for future valorization of general feedstock. With this aim, we report here the preparation of highly dispersed bimetallic Ni/Co nanoparticles (NPs), by a one-pot deposition-precipitation of Ni and Co phases onto mesoporous SBA-15 silica. By adjusting the chemical composition in the starting mixture, three supported catalysts with different Ni to Co weight ratios were obtained, which were further subjected to treatments under reducing conditions at high temperatures. Characterization of the resulting solids evidenced a homogenous distribution of Ni and Co elements forming the NPs, the best results being obtained for Ni/Co-2 : 2 samples, for which 50 wt.percent Ni–50 wt.percent Co NPs are found located on the surface of the residual phyllosilicate. Ni/Co-2 : 2, presenting the best performances for the hydrogenation of 2-methyl-quinoline, was further evaluated in the catalytic hydrogenation of selected imines, oximes and N-heteroarenes. Due to the high dispersion of bimetallic Ni?Co NPs, excellent properties (activity and selectivity) in the conversion of the selected substrates are reported.

Cine-Silylative Ring-Opening of α-Methyl Azacycles Enabled by the Silylium-Induced C-N Bond Cleavage

Zhang, Jianbo,Chang, Sukbok

, p. 12585 - 12590 (2020/08/21)

Described herein is the development of a borane-catalyzed cine-silylative ring-opening of α-methyl azacycles. This transformation involves four-step cascade processes: (i) exo-dehydrogenation of alicyclic amine, (ii) hydrosilylation of the resultant enamine, (iii) silylium-induced cis-β-amino elimination to open the ring skeleton, and (iv) hydrosilylation of the terminal olefin. The present borane catalysis also works efficiently for the C-N bond cleavage of acyclic tertiary amines. On the basis of experimental and computational studies, the silicon atom was elucidated to play a pivotal role in the β-amino elimination step.

Iridium complexes with a new type of N^N′-donor anionic ligand catalyze the N-benzylation of amines via borrowing hydrogen

Ruiz-Casta?eda, Margarita,Rodríguez, Ana M.,Aboo, Ahmed H.,Manzano, Blanca R.,Espino, Gustavo,Xiao, Jianliang,Jalón, Félix A.

, (2020/10/14)

The development of efficient and eco-friendly methods for the synthesis of elaborate amines is highly desired as they are valuable chemicals. The catalytic alkylation of amines using alcohols as alkylating agents, through the so-called borrowing hydrogen process, satisfies several of the principles of green chemistry. In this paper, four neutral half-sandwich complexes of Ru(II), Rh(III), and Ir(III) have been synthesized and tested as catalysts in the N-benzylation of amines with benzyl alcohol. The new derivatives contain a N^N′ anionic ligand derived from 5-(pyridin-2-ylmethylene)hydantoin (Hpyhy) that has never been tested in metal complexes with catalytic applications. In particular, the Ir derivatives, [(Cp*)IrX(pyhy)] (X = Cl or H), exhibit high activity along with good selectivity in the process. Indeed, the scope of the optimized protocol has been proved in the benzylation of several primary and secondary amines. The selectivity towards monoalkylated or dialkylated amines has been tuned by adjusting the amine:alcohol ratio and the reaction time. Experimental results support a mechanism consisting of three consecutive steps, two of which are Ir catalyzed, and a favorable condensation step without the assistance of the catalyst. Moreover, an unproductive competitive pathway can operate when the reaction is performed in open-air vessels, due to the irreversible release of H2. This route is hampered when the reaction is carried out in close vessels, likely because the release of H2 is reversed through metal-based heterolytic cleavage. From our viewpoint, these results show the potential of the new catalysts in a very attractive and promising methodology for the synthesis of amines.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 19302-20-6