Welcome to LookChem.com Sign In|Join Free

CAS

  • or

1992-49-0

Post Buying Request

1992-49-0 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

1992-49-0 Usage

Check Digit Verification of cas no

The CAS Registry Mumber 1992-49-0 includes 7 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 4 digits, 1,9,9 and 2 respectively; the second part has 2 digits, 4 and 9 respectively.
Calculate Digit Verification of CAS Registry Number 1992-49:
(6*1)+(5*9)+(4*9)+(3*2)+(2*4)+(1*9)=110
110 % 10 = 0
So 1992-49-0 is a valid CAS Registry Number.

1992-49-0SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 17, 2017

Revision Date: Aug 17, 2017

1.Identification

1.1 GHS Product identifier

Product name 1-phenyl-3-octanol

1.2 Other means of identification

Product number -
Other names 1-phenyl-octan-3-ol

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:1992-49-0 SDS

1992-49-0Relevant articles and documents

Transition metal complexes of a bis(carbene) ligand featuring 1,2,4-triazolin-5-ylidene donors: structural diversity and catalytic applications

Donthireddy, S. N. R.,Illam, Praseetha Mathoor,Rit, Arnab,Singh, Vivek Kumar

, p. 11958 - 11970 (2020/09/21)

Dialkylation of the 1,3-bis(1,2,4-triazol-1-yl)benzene with ethyl bromide results in the formation of [L-H2]Br2which, upon salt metathesis with NH4PF6, readily yields the bis(triazolium) salt [L-H2](PF6)2with non-coordinating counterions. [L-H2](PF6)2and Ag2O react in a 1?:?1 ratio to yield a binuclear AgI-tetracarbene complex of the composition [(L)2Ag2](PF6)2which undergoes a facile transmetalation reaction with [Cu(SMe2)Br] to deliver the corresponding CuI-NHC complex [(L)2Cu2](PF6)2. In contrast, the [L-H2]Br2reacts with [Ir(Cp*)Cl2]2to generate a doubly C-H activated IrIII-NHC complex5. Similarly, the triazolinylidene donor supported diorthometalated RuII-complex6is also obtained. Complexes5and6represent the first examples of a stable diorthometalated binuclear IrIII/RuII-complex supported by 1,2,4-triazolin-5-ylidene donors. The synthesized IrIII-NHC complex5is found to be more effective than its RuII-analogue (6) for the reduction of a range of alkenes/alkynesviathe transfer hydrogenation strategy. Conversely, RuII-complex6is identified as an efficient catalyst (0.01 mol% loading) for the β-alkylation of a wide range of secondary alcohols using primary alcohols as alkylating partnersviaa borrowing hydrogen strategy.

Bifunctional Ru(II) complex catalysed carbon-carbon bond formation: an eco-friendly hydrogen borrowing strategy

Chakrabarti, Kaushik,Paul, Bhaskar,Maji, Milan,Roy, Bivas Chandra,Shee, Sujan,Kundu, Sabuj

, p. 10988 - 10997 (2016/12/06)

The atom economical borrowing hydrogen methodology enables the use of alcohols as alkylating agents for selective C-C bond formation. A bifunctional 2-(2-pyridyl-2-ol)-1,10-phenanthroline (phenpy-OH) based Ru(ii) complex (2) was found to be a highly efficient catalyst for the one-pot β-alkylation of secondary alcohols with primary alcohols and double alkylation of cyclopentanol with different primary alcohols. Exploiting the metal-ligand cooperativity in complex 2, several aromatic, aliphatic and heteroatom substituted alcohols were selectively cross-coupled in high yields using significantly low catalyst loading (0.1 mol%). An outer-sphere mechanism is proposed for this system as exogenous PPh3 has no significant effect on the rate of the reaction. Notably, this is a rare one-pot strategy for β-alkylation of secondary alcohols using a bifunctional Ru(ii)-complex. Moreover, this atom-economical methodology displayed the highest cumulative turn over frequency (TOF) among all the reported transition metal complexes in cross coupling of alcohols.

Oxidation and β-Alkylation of Alcohols Catalysed by Iridium(I) Complexes with Functionalised N-Heterocyclic Carbene Ligands

Jiménez, M. Victoria,Fernández-Tornos, Javier,Modrego, F. Javier,Pérez-Torrente, Jesús J.,Oro, Luis A.

, p. 17877 - 17889 (2015/12/08)

The borrowing hydrogen methodology allows for the use of alcohols as alkylating agents for C-C bond forming processes offering significant environmental benefits over traditional approaches. Iridium(I)-cyclooctadiene complexes having a NHC ligand with a O- or N-functionalised wingtip efficiently catalysed the oxidation and β-alkylation of secondary alcohols with primary alcohols in the presence of a base. The cationic complex [Ir(NCCH3)(cod)(MeIm(2- methoxybenzyl))][BF4] (cod=1,5-cyclooctadiene, MeIm=1-methylimidazolyl) having a rigid O-functionalised wingtip, shows the best catalyst performance in the dehydrogenation of benzyl alcohol in acetone, with an initial turnover frequency (TOF0) of 1283 h-1, and also in the β-alkylation of 2-propanol with butan-1-ol, which gives a conversion of 94 % in 10 h with a selectivity of 99 % for heptan-2-ol. We have investigated the full reaction mechanism including the dehydrogenation, the cross-aldol condensation and the hydrogenation step by DFT calculations. Interestingly, these studies revealed the participation of the iridium catalyst in the key step leading to the formation of the new C-C bond that involves the reaction of an O-bound enolate generated in the basic medium with the electrophilic aldehyde.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 1992-49-0