Welcome to LookChem.com Sign In|Join Free

CAS

  • or

202197-26-0

Post Buying Request

202197-26-0 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

202197-26-0 Usage

Chemical Properties

Tan Solid

Uses

3-Chloro-4-(3-fluorobenzyloxy)aniline is an intermediate in the synthesis of Lapatinib (L175800).

Check Digit Verification of cas no

The CAS Registry Mumber 202197-26-0 includes 9 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 6 digits, 2,0,2,1,9 and 7 respectively; the second part has 2 digits, 2 and 6 respectively.
Calculate Digit Verification of CAS Registry Number 202197-26:
(8*2)+(7*0)+(6*2)+(5*1)+(4*9)+(3*7)+(2*2)+(1*6)=100
100 % 10 = 0
So 202197-26-0 is a valid CAS Registry Number.
InChI:InChI=1/C13H11ClFNO/c14-12-7-11(16)4-5-13(12)17-8-9-2-1-3-10(15)6-9/h1-7H,8,16H2

202197-26-0SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 19, 2017

Revision Date: Aug 19, 2017

1.Identification

1.1 GHS Product identifier

Product name 3-chloro-4-[(3-fluorophenyl)methoxy]aniline

1.2 Other means of identification

Product number -
Other names 3-chloro-4-{[(3-fluorophenyl)methyl]oxy}aniline

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:202197-26-0 SDS

202197-26-0Relevant articles and documents

Industrial Cunninghamia lanceolata carbon supported FeO(OH) nanoparticles-catalyzed hydrogenation of nitroarenes

Fu, Lihua,Li, Dingzhong,Lu, Hao,Qiu, Renhua,Sun, Tulai,Xing, Chen,Yang, Tianbao

, (2022/01/11)

The development of green and efficient methods for hydrogenation of nitroarenes is still highly demanding in organic synthesis. Herein, we report an industrial Cunninghamia lanceolata carbon supported FeO(OH) nanoparticles process for the synthesis of aryl amines with good yields via hydrogenation of nitroarenes. Nine key anti-cancer drug intermediates were successfully achieved with protocol. And Osimertinib intermediate 4m can be smoothly synthesized at a 2.67 kg-scale with >99.5% HPLC purity. This protocol features cheap carbon source, highly catalytic activity, simple operation, kilogram-scalable and recyclable catalysts (eight times without observable losing activity).

Catalytic production of anilines by nitro-compounds hydrogenation over highly recyclable platinum nanoparticles supported on halloysite nanotubes

Aepuru, Radhamanohar,Bustamante, Tatiana M.,Campos, Cristian H.,Leal-Villarroel, Edgardo,Mangalaraja, Ramalinga Viswanathan,Shanmugaraj, Krishnamoorthy,Torres, Cecilia C.,Vinoth, Victor

, (2021/07/28)

Pt-nanoparticles supported on halloysite-nanotubes (HNTs) were selectively deposited onto the inner (Pt(IN)/HNT) or outer (Pt(OUT)/HNT) surface of the support to evaluate their operational stability on the cleaner and efficient hydrogenation of nitro compounds to produce their corresponding anilines. The formation of Pt0-aggregates on the inner or outer surfaces was observed, with mean particles sizes of 2.4–2.9 nm. The catalysts were evaluated using ethanol as solvent and nitrobenzene as a model substrate at a temperature of 298 K, under 1 bar of H2 pressure. The Pt(IN)/HNT catalyst showed better catalytic performance than Pt(OUT)/HNT, which was mainly attributed to the confinement effect of the Pt-nanoparticles inside the HNTs. However, the operational stability showed that Pt(OUT)/HNT retained its catalytic performance after 15 cycles, while the Pt(IN)/HNT catalyst suffered deactivation after the 5th cycle. The best catalytic system showed a moderate-to-high efficiency in the efficient hydrogenation of 7 nitro compounds used to produce their corresponding anilines, which are important pharmaceutical building blocks.

Targeting Her2-insYVMA with Covalent Inhibitors - A Focused Compound Screening and Structure-Based Design Approach

Lategahn, Jonas,Hardick, Julia,Grabe, Tobias,Niggenaber, Janina,Jeyakumar, Kirujan,Keul, Marina,Tumbrink, Hannah L.,Becker, Christian,Hodson, Luke,Kirschner, Tonia,Kl?vekorn, Philip,Ketzer, Julia,Baumann, Matthias,Terheyden, Susanne,Unger, Anke,Weisner, J?rn,Müller, Matthias P.,Van Otterlo, Willem A. L.,Bauer, Sebastian,Rauh, Daniel

, p. 11725 - 11755 (2020/11/26)

Mutated or amplified Her2 serves as a driver of non-small cell lung cancer or mediates resistance toward the inhibition of its family member epidermal growth factor receptor with small-molecule inhibitors. To date, small-molecule inhibitors targeting Her2 which can be used in clinical routine are lacking, and therefore, the development of novel inhibitors was undertaken. In this study, the well-established pyrrolopyrimidine scaffold was modified with structural motifs identified from a screening campaign with more than 1600 compounds, which were applied against wild-type Her2 and its mutant variant Her2-A775_G776insYVMA. The resulting inhibitors were designed to covalently target a reactive cysteine in the binding site of Her2 and were further optimized by means of structure-based drug design utilizing a set of obtained complex crystal structures. In addition, the analysis of binding kinetics and absorption, distribution, metabolism, and excretion parameters as well as mass spectrometry experiments and western blot analysis substantiated our approach.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 202197-26-0