Welcome to LookChem.com Sign In|Join Free

CAS

  • or

22017-57-8

Post Buying Request

22017-57-8 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

22017-57-8 Usage

Check Digit Verification of cas no

The CAS Registry Mumber 22017-57-8 includes 8 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 5 digits, 2,2,0,1 and 7 respectively; the second part has 2 digits, 5 and 7 respectively.
Calculate Digit Verification of CAS Registry Number 22017-57:
(7*2)+(6*2)+(5*0)+(4*1)+(3*7)+(2*5)+(1*7)=68
68 % 10 = 8
So 22017-57-8 is a valid CAS Registry Number.

22017-57-8Downstream Products

22017-57-8Relevant articles and documents

Electrochemical synthesis of sulfinic esters from alcohols and thiophenols

He, Yang,Zhang, Jinli,Xu, Liang,Wei, Yu

supporting information, (2020/01/31)

Electrochemical oxidative couplings between S[sbnd]H and O[sbnd]H bonds are achieved herein directly from readily-available alcohols and thiophenols, affording a series of diverse sulfinic esters. This strategy can take advantage of 6 equivalents of alcohol, relative to thiophenol, to achieve moderate to good yields, without the assistance of any metallic catalysts, bases, and additional oxidants.

Synthesis and reactivity of phosphine-arenesulfonate palladium(II) alkyl complexes that contain methoxy substituents

Liu, Qian,Jordan, Richard F.

, p. 207 - 214 (2019/06/24)

Phosphine-arenesulfonate ligands that contain 1-3 methoxy substituents on the benzo linker, P(2-OMe-Ph)2(2-SO3Na-5-OMe-Ph) (Na[1a]), P(2-MeO-Ph)2(2-SO3Na-4,5-(OMe)2-Ph) (Na[1b]) and P(2-MeO-Ph)2

A kinetic study on nucleophilic displacement reactions of aryl benzenesulfonates with potassium ethoxide: Role of K+ ion and reaction mechanism deduced from analyses of LFERs and activation parameters

Um, Ik-Hwan,Kang, Ji-Sun,Shin, Young-Hee,Buncel, Erwin

, p. 490 - 497 (2013/03/13)

Pseudofirst-order rate constants (kobsd) have been measured spectrophotometrically for the nucleophilic substitution reactions of 2,4-dinitrophenyl X-substituted benzenesulfonates 4a-f and Y-substituted phenyl benzenesulfonates 5a-k with EtOK in anhydrous ethanol. Dissection of k obsd into kEtO- and kEtOK (i.e., the second-order rate constants for the reactions with the dissociated EtO - and ion-paired EtOK, respectively) shows that the ion-paired EtOK is more reactive than the dissociated EtO-, indicating that K + ion catalyzes the reaction. The catalytic effect exerted by K + ion (e.g., the kEtOK/kEtO- ratio) decreases linearly as the substituent X in the benzenesulfonyl moiety changes from an electron-donating group (EDG) to an electron-withdrawing group (EWG), but it is independent of the electronic nature of the substituent Y in the leaving group. The reactions have been concluded to proceed through a concerted mechanism from analyses of the kinetic data through linear free energy relationships (e.g., the Bronsted-type, Hammett, and Yukawa-Tsuno plots). K+ ion catalyzes the reactions by increasing the electrophilicity of the reaction center through a cyclic transition state (TS) rather than by increasing the nucleofugality of the leaving group. Activation parameters (e.g., ΔH? and ΔS?) determined from the reactions performed at five different temperatures further support the proposed mechanism and TS structures.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 22017-57-8