Welcome to LookChem.com Sign In|Join Free

CAS

  • or

223553-87-5

Post Buying Request

223553-87-5 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

223553-87-5 Usage

General Description

4-Bromo-N-cyclohexylbenzamide is a chemical compound with the molecular formula C13H16BrNO. It is a derivative of benzamide, with a bromine atom attached to the 4th position of the benzene ring and a cyclohexyl group attached to the amide nitrogen. 4-Bromo-N-cyclohexylbenzamide is commonly used in organic synthesis and medicinal chemistry research. It is known for its potential biological activity, including its ability to modulate certain biological processes or to act as a ligand for various receptors. 4-Bromo-N-cyclohexylbenzamide may also have potential applications in pharmaceutical development and drug discovery due to its unique structure and chemical properties.

Check Digit Verification of cas no

The CAS Registry Mumber 223553-87-5 includes 9 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 6 digits, 2,2,3,5,5 and 3 respectively; the second part has 2 digits, 8 and 7 respectively.
Calculate Digit Verification of CAS Registry Number 223553-87:
(8*2)+(7*2)+(6*3)+(5*5)+(4*5)+(3*3)+(2*8)+(1*7)=125
125 % 10 = 5
So 223553-87-5 is a valid CAS Registry Number.
InChI:InChI=1/C13H16BrNO/c14-11-8-6-10(7-9-11)13(16)15-12-4-2-1-3-5-12/h6-9,12H,1-5H2,(H,15,16)

223553-87-5SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 19, 2017

Revision Date: Aug 19, 2017

1.Identification

1.1 GHS Product identifier

Product name 4-Bromo-N-cyclohexylbenzamide

1.2 Other means of identification

Product number -
Other names N-Cyclohexyl4-bromobenzamide

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:223553-87-5 SDS

223553-87-5Relevant articles and documents

Decarboxylative sp 3 C-N coupling via dual copper and photoredox catalysis

Liang, Yufan,Zhang, Xiaheng,MacMillan, David W. C.

, p. 83 - 88 (2018/07/24)

Over the past three decades, considerable progress has been made in the development of methods to construct sp 2 carbon-nitrogen (C-N) bonds using palladium, copper or nickel catalysis 1,2 . However, the incorporation of alkyl substrates to form sp 3 C-N bonds remains one of the major challenges in the field of cross-coupling chemistry. Here we demonstrate that the synergistic combination of copper catalysis and photoredox catalysis can provide a general platform from which to address this challenge. This cross-coupling system uses naturally abundant alkyl carboxylic acids and commercially available nitrogen nucleophiles as coupling partners. It is applicable to a wide variety of primary, secondary and tertiary alkyl carboxylic acids (through iodonium activation), as well as a vast array of nitrogen nucleophiles: nitrogen heterocycles, amides, sulfonamides and anilines can undergo C-N coupling to provide N-alkyl products in good to excellent efficiency, at room temperature and on short timescales (five minutes to one hour). We demonstrate that this C-N coupling protocol proceeds with high regioselectivity using substrates that contain several amine groups, and can also be applied to complex drug molecules, enabling the rapid construction of molecular complexity and the late-stage functionalization of bioactive pharmaceuticals.

Copper-catalyzed intermolecular amidation and imidation of unactivated alkanes

Tran, Ba L.,Li, Bijie,Driess, Matthias,Hartwig, John F.

supporting information, p. 2555 - 2563 (2014/03/21)

We report a set of rare copper-catalyzed reactions of alkanes with simple amides, sulfonamides, and imides (i.e., benzamides, tosylamides, carbamates, and phthalimide) to form the corresponding N-alkyl products. The reactions lead to functionalization at secondary C-H bonds over tertiary C-H bonds and even occur at primary C-H bonds. [(phen)Cu(phth)] (1-phth) and [(phen)Cu(phth)2] (1-phth2), which are potential intermediates in the reaction, have been isolated and fully characterized. The stoichiometric reactions of 1-phth and 1-phth2 with alkanes, alkyl radicals, and radical probes were investigated to elucidate the mechanism of the amidation. The catalytic and stoichiometric reactions require both copper and tBuOOtBu for the generation of N-alkyl product. Neither 1-phth nor 1-phth2 reacted with excess cyclohexane at 100 C without tBuOOtBu. However, the reactions of 1-phth and 1-phth2 with tBuOOtBu afforded N-cyclohexylphthalimide (Cy-phth), N-methylphthalimide, and tert-butoxycyclohexane (Cy-OtBu) in approximate ratios of 70:20:30, respectively. Reactions with radical traps support the intermediacy of a tert-butoxy radical, which forms an alkyl radical intermediate. The intermediacy of an alkyl radical was evidenced by the catalytic reaction of cyclohexane with benzamide in the presence of CBr4, which formed exclusively bromocyclohexane. Furthermore, stoichiometric reactions of [(phen)Cu(phth)2] with tBuOOtBu and (Ph(Me)2CO) 2 at 100 C without cyclohexane afforded N-methylphthalimide (Me-phth) from β-Me scission of the alkoxy radicals to form a methyl radical. Separate reactions of cyclohexane and d12-cyclohexane with benzamide showed that the turnover-limiting step in the catalytic reaction is the C-H cleavage of cyclohexane by a tert-butoxy radical. These mechanistic data imply that the tert-butoxy radical reacts with the C-H bonds of alkanes, and the subsequent alkyl radical combines with 1-phth2 to form the corresponding N-alkyl imide product.

Pd(ii)-catalyzed decarboxylative cross-coupling of oxamic acids with potassium phenyltrifluoroborates under mild conditions

Li, Mingzong,Wang, Cong,Fang, Ping,Ge, Haibo

supporting information; experimental part, p. 6587 - 6589 (2011/06/25)

A novel Pd-catalyzed decarboxylative cross-coupling of oxamic acids with potassium phenyltrifluoroborates has been realized under mild reaction conditions. This method provides an efficient access to N-mono- or N,N-disubstituted benzamides and benzoates.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 223553-87-5