25468-43-3Relevant articles and documents
Synthesis and properties of pentane amino derivatives
Talybov,Mamedbeili,Abbasov,Kochetkov
, p. 2455 - 2459 (2010)
Synthesis of pentane amino derivatives by the reaction of the corresponding amines with 1-bromopentanes of n-and iso-structure by environmentally safe methods in water medium was carried out. The structure of the compounds obtained was confirmed by elemental analysis, IR, 1H and 13C NMR spectroscopy. The products synthesized were tested as reagents for the suppression of growth of the sulfate-reducing bacteria and as the anticorrosive substances. It was found that they are effective bactericides for the sulfate-reducing bacteria and exhibit high anticorrosive properties. Pleiades Publishing, Ltd., 2010.
Reusable Co-nanoparticles for general and selectiveN-alkylation of amines and ammonia with alcohols
Beller, Matthias,Gawande, Manoj B.,Jagadeesh, Rajenahally V.,Kadam, Ravishankar G.,Li, Xinmin,Ma, Zhuang,Petr, Martin,Zbo?il, Radek,Zhou, Bei
, p. 111 - 117 (2022/01/06)
A general cobalt-catalyzedN-alkylation of amines with alcohols by borrowing hydrogen methodology to prepare different kinds of amines is reported. The optimal catalyst for this transformation is prepared by pyrolysis of a specific templated material, which is generatedin situby mixing cobalt salts, nitrogen ligands and colloidal silica, and subsequent removal of silica. Applying this novel Co-nanoparticle-based material, >100 primary, secondary, and tertiary amines includingN-methylamines and selected drug molecules were conveniently prepared starting from inexpensive and easily accessible alcohols and amines or ammonia.
Nickel Complexes Bearing N,N,O-Tridentate Salicylaldiminato Ligand: Efficient Catalysts for Imines Formation via Dehydrogenative Coupling of Primary Alcohols with Amines
Han, Zhangang,Hao, Zhiqiang,Lin, Jin,Lu, Guo-Liang,Zhang, Junhua,Zhang, Xiaoying
, p. 3843 - 3853 (2021/11/18)
Treatment of salicylaldiminato ligand L1H-L2H (L1H = 2,4-di-tert-butyl-6-((quinolin-8-ylimino)methyl)phenol; L2H = 2,4-di-tert-butyl-6-(((2-(diethylamino)ethyl)imino)methyl)phenol) with Ni(OAc)2·4H2O in refluxing ethanol afforded nickel complexes [(L1)Ni(OAc)] (1) and [(L2)Ni(OAc)] (2), respectively. Reaction of L3H (L3H = (2,4-di-tert-butyl-6-(((2-(pyridin-2-yl)ethyl)imino)methyl)phenol)) with Ni(OAc)2·4H2O in the presence of excess triethylanmine gave the dual ligands coordinated nickel complex [(L2)2Ni] (3). Complexes 1-3 were well characterized by high-resolution mass spectrometry, infrared spectroscopy, elemental analysis, and X-ray diffraction analysis. All the three Ni(II) complexes exhibited efficient activity and good selectivity in the acceptorless dehydrogenative coupling of alcohols and amines to produce imines and diimines. The present protocol provides an atom-economical and sustainable route for the synthesis of various imine derivatives by employing an earth-abundant nickel salt and easily prepared salicylaldiminato ligands.
Highly economical and direct amination of sp3carbon using low-cost nickel pincer catalyst
Brandt, Andrew,Rangumagar, Ambar B.,Szwedo, Peter,Wayland, Hunter A.,Parnell, Charlette M.,Munshi, Pradip,Ghosh, Anindya
, p. 1862 - 1874 (2021/01/20)
Developing more efficient routes to achieve C-N bond coupling is of great importance to industries ranging from products in pharmaceuticals and fertilizers to biomedical technologies and next-generation electroactive materials. Over the past decade, improvements in catalyst design have moved synthesis away from expensive metals to newer inexpensive C-N cross-coupling approaches via direct amine alkylation. For the first time, we report the use of an amide-based nickel pincer catalyst (1) for direct alkylation of amines via activation of sp3 C-H bonds. The reaction was accomplished using a 0.2 mol% catalyst and no additional activating agents other than the base. Upon optimization, it was determined that the ideal reaction conditions involved solvent dimethyl sulfoxide at 110 °C for 3 h. The catalyst demonstrated excellent reactivity in the formation of various imines, intramolecularly cyclized amines, and substituted amines with a turnover number (TON) as high as 183. Depending on the base used for the reaction and the starting amines, the catalyst demonstrated high selectivity towards the product formation. The exploration into the mechanism and kinetics of the reaction pathway suggested the C-H activation as the rate-limiting step, with the reaction second-order overall, holding first-order behavior towards the catalyst and toluene substrate.
One-pot, chemoselective synthesis of secondary amines from aryl nitriles using a PdPt-Fe3O4nanoparticle catalyst
Byun, Sangmoon,Cho, Ahra,Cho, Jin Hee,Kim, B. Moon
, p. 4201 - 4209 (2020/09/23)
We have developed a new catalytic method for the one-pot, cascade synthesis of unsymmetrical secondary amines via the reductive amination of aryl nitriles with nitroalkanes using a PdPt-Fe3O4 nanoparticle (NP) catalyst. The use of a bimetallic catalyst resulted in enhanced reactivity and selectivity compared to that of either monometallic Pd-Fe3O4 or the Pt-Fe3O4 NP catalyst. Using this bimetallic catalytic system, we were successful in the synthesis of various unsymmetrical secondary amines under mild conditions. However, aryl nitriles containing an electron-donating substituent were rather resistant to the reductive amination, and when hexafluoroisopropanol (HFIP) was used as a co-solvent, the reaction selectivity and yield for unsymmetrical secondary amines increased dramatically. Using the catalyst system, one-pot, gram-scale synthesis of indole was possible from 2-nitrophenylacetonitrile. Due to the magnetic property of the Fe3O4 support, the bimetallic catalyst could easily be recycled using an external magnet at least four times.
Selective Synthesis of Secondary Amines from Nitriles by a User-Friendly Cobalt Catalyst
Sharma, Dipesh M.,Punji, Benudhar
supporting information, p. 3930 - 3936 (2019/07/12)
Selective hydrogenation/reductive amination of nitriles to secondary amines catalyzed by an inexpensive and user-friendly cobalt complex, (Xantphos)CoCl2, is reported. The use of (Xantphos)CoCl2 and ammonia borane (NH3?BH3) combination affords the selective reduction of nitriles to symmetrical secondary amines, whereas the employment of (Xantphos)CoCl2 and dimethylamine borane (Me2NH?BH3) along with external amines produce unsymmetrical secondary amines and tertiary amines. The general applicability of this methodology is demonstrated by the synthesis of 43 symmetrical and unsymmetrical secondary and tertiary amines bearing diverse functionalities. (Figure presented.).
Cobalt complex, preparation method thereof, and application thereof in selective catalysis of transfer hydrogenation reaction of cyano group
-
Paragraph 0173-0175; 0177, (2018/05/07)
The invention discloses a cobalt complex, a preparation method thereof, and an application thereof in the selective catalysis of a transfer hydrogenation reaction of a cyano group. The structural formula of the cobalt complex is represented by formula I. The cobalt complex is prepared through a reaction of a cobalt salt and an NNP ligand or a PNP ligand under the protection of an inert atmosphere;and the chemical formula of the cobalt salt is CoX12, wherein X1 represents halogen, a sulfate radical, a perchlorate radical, a hexafluorophosphate radical, a hexafluoroantimonate radical, a tetrafluoroborate radical, a trifluoromethanesulfonate radical or a tetra(pentafluorophenyl)borate radical. The cobalt complex can be used in the selective catalysis of the transfer hydrogenation reaction ofthe cyano group to obtain a primary amine compound, a secondary amine compound and a tertiary amine compound, the primary amine compound, the secondary amine compound and the tertiary amine compoundare important intermediates in a series of subsequent functionalizing reactions, and the cobalt complex has a very high catalysis activity, and has great research values and a great application prospect.
Use of (cyclopentadienone)iron tricarbonyl complexes for c-n bond formation reactions between amines and alcohols
Brown, Thomas J.,Cumbes, Madeleine,Diorazio, Louis J.,Clarkson, Guy J.,Wills, Martin
, p. 10489 - 10503 (2018/05/31)
The application of a series of (cyclopentadienone)iron tricarbonyl complexes to "borrowing hydrogen" reactions between amines and alcohols was completed in order to assess their catalytic activity. The electronic variation of the aromatic groups flanking the C?O of the cyclopentadienone influenced the efficiency of the reactions; however, in other cases, the Kn?lker catalyst 1, containing trimethylsilyl groups flanking the cyclopentadienone ketone, gave the best results. In some cases, the change of the ratio of amine to alcohol improves the conversion significantly. The application of iron catalysts to the synthesis of a range of amines, including unsaturated amines, was investigated.
Mild and Selective Cobalt-Catalyzed Chemodivergent Transfer Hydrogenation of Nitriles
Shao, Zhihui,Fu, Shaomin,Wei, Mufeng,Zhou, Shaolin,Liu, Qiang
, p. 14653 - 14657 (2016/11/23)
Herein, we describe a selective cobalt-catalyzed chemodivergent transfer hydrogenation of nitriles to synthesize primary, secondary, and tertiary amines. The solvent effect plays a key role for the selectivity control. The general applicability of this procedure was highlighted by the synthesis of more than 70 amine products bearing various functional groups in high chemoselectivity. Moreover, this mild system achieved >2000 TONs (turnover numbers) for the transfer hydrogenation of nitriles.
Selective hydrogenation of nitriles to secondary amines catalyzed by a pyridyl-functionalized and alkenyl-tethered NHC-Ru(II) complex
Saha, Sayantani,Kaur, Mandeep,Singh, Kuldeep,Bera, Jitendra K.
, p. 87 - 94 (2016/06/09)
A set of Co(III) and Ru(II) compounds are synthesized bearing pyridyl-functionalized and alkenyl-tethered N-heterocyclic carbene (NHC) ligand (L1). [CoIII(L1)3](PF6)3 (1) was synthesized by the reaction of [L1H]PF6, Co(OAc)2.4H2O, K2CO3 in tetrahydrofuran (THF) under refluxing condition. [RuIIL1(η6-p-cymene)Cl]PF6 (2) was synthesized via transmetallation method. For both compounds, the NHC ligand chelates the metal through carbene carbon and pyridyl nitrogen whereas the butenyl unit remains free. Compound 2 hydrogenates organic nitriles efficiently providing selectively secondary amines. In the presence of external amines, unsymmetrical secondary amines are also obtained.