29540-83-8Relevant articles and documents
Solvent coordination to palladium can invert the selectivity of oxidative addition
Elias, Emily K.,Neufeldt, Sharon R.,Rehbein, Steven M.
, p. 1618 - 1628 (2022/02/21)
Reaction solvent was previously shown to influence the selectivity of Pd/PtBu3-catalyzed Suzuki-Miyaura cross-couplings of chloroaryl triflates. The role of solvents has been hypothesized to relate to their polarity, whereby polar solvents stabilize anionic transition states involving [Pd(PtBu3)(X)]- (X = anionic ligand) and nonpolar solvents do not. However, here we report detailed studies that reveal a more complicated mechanistic picture. In particular, these results suggest that the selectivity change observed in certain solvents is primarily due to solvent coordination to palladium. Polar coordinating and polar noncoordinating solvents lead to dramatically different selectivity. In coordinating solvents, preferential reaction at triflate is likely catalyzed by Pd(PtBu3)(solv), whereas noncoordinating solvents lead to reaction at chloride through monoligated Pd(PtBu3). The role of solvent coordination is supported by stoichiometric oxidative addition experiments, density functional theory (DFT) calculations, and catalytic cross-coupling studies. Additional results suggest that anionic [Pd(PtBu3)(X)]- is also relevant to triflate selectivity in certain scenarios, particularly when halide anions are available in high concentrations.
Ni-Catalyzed Cross-Electrophile Coupling of Aryl Triflates with Thiocarbonates via C-O/C-O Bond Cleavage
Zhu, Zhaodong,Gong, Yuxin,Tong, Weiqi,Xue, Weichao,Gong, Hegui
supporting information, p. 2158 - 2163 (2021/04/05)
A nickel-catalyzed reductive coupling of aryl triflates with thiocarbonates is reported here. Both electron-rich and -deficient aryl C(sp2)-O electrophiles as well as a class of O-tBu S-alkyl thiocarbonates are compatible with the optimized reaction conditions, as evidenced by 49 examples. The reaction also proceeds with good chemoselective cleavage of the C-O bond with regard to thioesters. This work broadens the scope of nickel-catalyzed reductive cross-electrophile coupling reactions.
Dual Photoredox-/Palladium-Catalyzed Cross-Electrophile Couplings of Polyfluoroarenes with Aryl Halides and Triflates
Qin, Jian,Zhu, Shengqing,Chu, Lingling
supporting information, p. 2246 - 2252 (2021/04/02)
A visible-light photoredox-/Pd-catalyzed cross-electrophile arylation of polyfluoroarenes with aryl halides and triflates in the presence of dialkylamines is reported for the first time. This synergistic protocol affords access to a series of fluorodiaryls from easily available starting materials under mild and operationally simple conditions. A series of mechanistic experiments, including the stoichiometric reactions of a ligated (aryl)Pd complex, Stern-Volmer fluorescence quenching studies, cyclic voltammetry studies, and UV-vis spectroscopy, were performed to elucidate the potential catalytic pathway in this synergistic process.
Nickel-Catalyzed Arylation/Alkenylation of tert-Cyclobutanols with Aryl/Alkenyl Triflates via a C - C Bond Cleavage
Wang, Zhen,Hu, Yuanyuan,Jin, Hongwei,Liu, Yunkui,Zhou, Bingwei
, p. 466 - 474 (2020/12/22)
Herein, we first present a nickel-catalyzed arylation and alkenylation of tert-cyclobutanols with aryl/alkenyl triflates via a C-C bond cleavage. An array of γ-substituted ketones was obtained in moderate-to-good yields, thus featuring earth-abundant nick
Dynamic Kinetic Cross-Electrophile Arylation of Benzyl Alcohols by Nickel Catalysis
Guo, Peng,Wang, Ke,Jin, Wen-Jie,Xie, Hao,Qi, Liangliang,Liu, Xue-Yuan,Shu, Xing-Zhong
supporting information, p. 513 - 523 (2021/01/12)
Catalytic transformation of alcohols via metal-catalyzed cross-coupling reactions is very important, but it typically relies on a multistep procedure. We here report a dynamic kinetic cross-coupling approach for the direct functionalization of alcohols. The feasibility of this strategy is demonstrated by a nickel-catalyzed cross-electrophile arylation reaction of benzyl alcohols with (hetero)aryl electrophiles. The reaction proceeds with a broad substrate scope of both coupling partners. The electron-rich, electron-poor, and ortho-/meta-/para-substituted (hetero)aryl electrophiles (e.g., Ar-OTf, Ar-I, Ar-Br, and inert Ar-Cl) all coupled well. Most of the functionalities, including aldehyde, ketone, amide, ester, nitrile, sulfone, furan, thiophene, benzothiophene, pyridine, quinolone, Ar-SiMe3, Ar-Bpin, and Ar-SnBu3, were tolerated. The dynamic nature of this method enables the direct arylation of benzylic alcohol in the presence of various nucleophilic groups, including nonactivated primary/secondary/tertiary alcohols, phenols, and free indoles. It thus offers a robust alternative to existing methods for the precise construction of diarylmethanes. The synthetic utility of the method was demonstrated by a concise synthesis of biologically active molecules and by its application to peptide modification and conjugation. Preliminary mechanistic studies revealed that the reaction of in situ formed benzyl oxalates with nickel, possibly via a radical process, is an initial step in the reaction with aryl electrophiles.
Bismuth-Catalyzed Oxidative Coupling of Arylboronic Acids with Triflate and Nonaflate Salts
Cornella, Josep,Peciukenas, Vytautas,Planas, Oriol
supporting information, p. 11382 - 11387 (2020/07/14)
Herein we present a Bi-catalyzed cross-coupling of arylboronic acids with perfluoroalkyl sulfonate salts based on a Bi(III)/Bi(V) redox cycle. An electron-deficient sulfone ligand proved to be key for the successful implementation of this protocol, which allows the unusual construction of C(sp2)-O bonds using commercially available NaOTf and KONf as coupling partners. Preliminary mechanistic studies as well as theoretical investigations reveal the intermediacy of a highly electrophilic Bi(V) species, which rapidly eliminates phenyl triflate.
Palladium-Catalyzed Synthesis of N, N-Dimethylanilines via Buchwald-Hartwig Amination of (Hetero)aryl Triflates
Pospech, Jola,Taeufer, Tobias
, p. 7097 - 7111 (2020/06/27)
This work delineates the synthesis of N,N-dimethylaniline derivatives from dimethylamines and aryl triflates. The palladium-catalyzed C-N bond formation proceeds in excellent yields, using an unsophisticated catalytic system, a mild base, and triflates as electrophiles, which are readily available from inexpensive phenols. N,N-Dimethylanilines are multifunctional reaction partners and represent useful but underutilized building blocks in organic synthesis.
Base-promoted selective O-phosphorylation of aryl triflates with P(O)-H compounds
Wang, Mingyue,Yang, Jia,Wang, Shuai,Zhong, Hong
supporting information, (2020/05/05)
Compared to previous transition metal-catalyzed C-phosphorylation reactions for constructing C–P bonds, in the absence of transition metal catalysts and ligands, a direct O-phosphorylation of aryl triflates selectively occurred with P(O)-H compounds in the presence of a base via the construction of O–P bonds. This transformation proceeds under simple and mild conditions, and provides a new method for the preparation of valuable organophosphoryl compounds from readily available P(O)-H compounds and triflates.
Palladium-Catalyzed Cyanation under Mild Conditions: A Case Study to Discover Appropriate Substrates among Halides and Pseudohalides
Rajendra, Merla Arjuna,Sunil,Sajith, Ayyiliath Meleveetil,Joy, Muthipeedika Nibin,Bakulev, Vasiliy A.,Haridas, Karickal Raman
, p. 1629 - 1633 (2020/09/15)
A case study has been effectively carried out to identify a suitable substrate among halides and pseudohalides for the palladium-catalyzed cyanation reactions under mild conditions. Among the various substrates considered for evaluation, aryl pentafluorobenzenesulfonates and nonaflates were identified to be the best substrates when compared to corresponding halides and pseudohalides. The substoichiometric use of nontoxic, environmentally benign potassium hexacyanoferrate as a cyanide source and exceptionally milder conditions further highlights the significance of the protocol developed. A wide range of electronically biased and sterically challenging substrates provided the corresponding the nitriles in good to excellent yields.
Reductive Coupling between C-N and C-O Electrophiles
He, Rong-De,Li, Chun-Ling,Pan, Qiu-Quan,Guo, Peng,Liu, Xue-Yuan,Shu, Xing-Zhong
supporting information, p. 12481 - 12486 (2019/09/04)
The cross-electrophile reaction is a promising strategy for C-C bond formation. Recent studies have focused mainly on reactions with organic halides. Here we report a coupling reaction between C-N and C-O electrophiles that demonstrates the possibility of constructing a C-C bond via C-N and C-O cleavage. Several reactions between benzyl/aryl ammonium salts and vinyl/aryl C-O electrophiles have been studied. Preliminary mechanistic studies revealed that the benzyl ammoniums were activated through a radical mechanism.