Welcome to LookChem.com Sign In|Join Free

CAS

  • or

2979-26-2

Post Buying Request

2979-26-2 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

2979-26-2 Usage

Check Digit Verification of cas no

The CAS Registry Mumber 2979-26-2 includes 7 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 4 digits, 2,9,7 and 9 respectively; the second part has 2 digits, 2 and 6 respectively.
Calculate Digit Verification of CAS Registry Number 2979-26:
(6*2)+(5*9)+(4*7)+(3*9)+(2*2)+(1*6)=122
122 % 10 = 2
So 2979-26-2 is a valid CAS Registry Number.
InChI:InChI=1/C8H16O2/c1-2-10-8-6-4-3-5-7(8)9/h7-9H,2-6H2,1H3

2979-26-2SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 19, 2017

Revision Date: Aug 19, 2017

1.Identification

1.1 GHS Product identifier

Product name 2-ethoxycyclohexan-1-ol

1.2 Other means of identification

Product number -
Other names trans-2-ethoxycylohexanol

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:2979-26-2 SDS

2979-26-2Relevant articles and documents

Merging Halogen-Atom Transfer (XAT) and Cobalt Catalysis to Override E2-Selectivity in the Elimination of Alkyl Halides: A Mild Route towardcontra-Thermodynamic Olefins

Zhao, Huaibo,McMillan, Alastair J.,Constantin, Timothée,Mykura, Rory C.,Juliá, Fabio,Leonori, Daniele

supporting information, p. 14806 - 14813 (2021/09/18)

We report here a mechanistically distinct tactic to carry E2-type eliminations on alkyl halides. This strategy exploits the interplay of α-aminoalkyl radical-mediated halogen-atom transfer (XAT) with desaturative cobalt catalysis. The methodology is high-yielding, tolerates many functionalities, and was used to access industrially relevant materials. In contrast to thermal E2 eliminations where unsymmetrical substrates give regioisomeric mixtures, this approach enables, by fine-tuning of the electronic and steric properties of the cobalt catalyst, to obtain high olefin positional selectivity. This unprecedented mechanistic feature has allowed access tocontra-thermodynamic olefins, elusive by E2 eliminations.

MBA-cross-linked poly(N-vinyl-2-pyrrolidone)/ferric chloride macromolecular coordination complex as a novel and recyclable Lewis acid catalyst: Synthesis, characterization, and performance toward for regioselective ring-opening alcoholysis of epoxides

Rahmatpour, Ali,Zamani, Maryam

, (2021/09/30)

A novel macromolecular-metal coordination complex, MBA-cross-linked PNVP/FeCl3 material was fabricated by immobilization of water intolerant ferric chloride onto the porous cross-linked poly(N-vinyl-2-pyrrolidone) carrier beads as a macromolecular ligand or carrier which was prepared by suspension free-radical copolymerization of N-vinyl-2-pyrrolidone (NVP) and N,N′-methylene bis-acrylamide (MBA) as a crosslinking agent in water. The obtained PNVP/FeCl3 was characterized by UV/vis and FT-IR spectroscopies, TGA, FE-SEM, EDX, and ICP techniques. This heterogenized version of ferric chloride is a convenient and safe alternative to highly water intolerant ferric chloride. The catalytic performance of (PNVP/FeCl3) as an efficient and recyclable polymeric Lewis acid catalyst was appropriately probed in the regio-and stereoselective nucleophilic ring opening of various epoxides with various alcohols in excellent yields with TOF up to 182.48 h?1 without generating any waste. The activity data indicate that this heterogeneous catalyst is very active and could be easily recovered, and reused at least six times without appreciable loss of activity indicating its stability under experimental conditions.

The charge-assisted hydrogen-bonded organic framework (CAHOF) self-assembled from the conjugated acid of tetrakis(4-aminophenyl)methane and 2,6-naphthalenedisulfonate as a new class of recyclable Br?nsted acid catalysts

Belokon, Yuri N.,Dmitrienko, Artem O.,Gak, Alexander S.,Gerasimov, Igor S.,Kuznetsova, Svetlana A.,Larionov, Vladimir A.,Li, Han,Medvedev, Michael G.,Nelyubina, Yulia V.,North, Michael,Saghyan, Ashot S.,Smol'yakov, Alexander F.,Zhereb, Vladimir P.

supporting information, p. 1124 - 1134 (2020/07/10)

The acid–base neutralization reaction of commercially available disodium 2,6-naphthalenedisulfonate (NDS, 2 equivalents) and the tetrahydrochloride salt of tetrakis(4-aminophenyl)methane (TAPM, 1 equivalent) in water gave a novel three-dimensional charge-assisted hydrogen-bonded framework (CAHOF, F-1). The framework F-1 was characterized by X-ray diffraction, TGA, elemental analysis, and 1H NMR spectroscopy. The framework was supported by hydrogen bonds between the sulfonate anions and the ammonium cations of NDS and protonated TAPM moieties, respectively. The CAHOF material functioned as a new type of catalytically active Br?nsted acid in a series of reactions, including the ring opening of epoxides by water and alcohols. A Diels–Alder reaction between cyclopentadiene and methyl vinyl ketone was also catalyzed by F-1 in heptane. Depending on the polarity of the solvent mixture, the CAHOF F-1 could function as a purely heterogeneous catalyst or partly dissociate, providing some dissolved F-1 as the real catalyst. In all cases, the catalyst could easily be recovered and recycled.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 2979-26-2