4714-24-3Relevant articles and documents
Introduction of a Recyclable Basic Ionic Solvent with Bis-(NHC) Ligand Property and The Possibility of Immobilization on Magnetite for Ligand- and Base-Free Pd-Catalyzed Heck, Suzuki and Sonogashira Cross-Coupling Reactions in Water
Min, Qingwang,Miao, Penghua,Chu, Deyu,Liu, Jinghan,Qi, Meijuan,Kazemnejadi, Milad
, p. 3030 - 3047 (2021/02/16)
A new versatile and recyclable NHC ligand precursor has been developed with ligand, base, and solvent functionalities for the efficient Pd-catalyzed Heck, Suzuki and Sonogashira cross-coupling reactions under mild conditions. Furthermore, NHC ligand precursor was immobilized on magnetite and its catalytic activity was also evaluated towards the coupling reactions as a heterogeneous catalyst. The NHC ligand precursor was prepared with imidazolium functionalization of TCT followed by a simple ion exchange by hydroxide ions. However, the results revealed an excellent catalytic activity for the both homogeneous and heterogeneous catalytic systems. 1.52?g.cm?3 and 1194 cP was obtained for the density and viscosity of the NHC ligand precursor respectively. On the other hand, the heterogeneous type could be readily recovered from the reaction mixture and reused for several times while preserving its properties. Heterogeneous nature of the magnetic catalyst was studied by hot filtration, mercury poisoning, and three-phase tests. High to excellent yields were obtained for all entries for the both homogeneous and heterogeneous catalysts, which reflects the high consistency of the catalyst. Graphic Abstract: [Figure not available: see fulltext.]
Structural Effect of Pincer Pd(II)–ONO Complexes Modified with Acylthiourea on Sizes of the In Situ Generated Pd Nanoparticles During Heck Coupling Reaction
Jerome,Babu, S. Ganesh,Karvembu
, p. 1633 - 1645 (2020/10/15)
Abstract: The Pd nanoparticles generated in situ from Pd–pincer complexes catalyzed Heck coupling reaction. For this purpose, new Pd(II)–ONO pincer complexes (1–4) containing acylthiourea ancillary ligand were obtained by treating [Pd(ONO)(CH3CN)] with the respective N-substituted carbamothioyl benzamide ligand (L1–L4). Formation of these complexes was confirmed by UV–Visible, FT-IR, NMR and mass spectroscopic techniques. The sizes of in situ formed Pd nanoparticles were greatly affected by the substituent in ancillary ligand, which in turn influenced their catalytic activity towards Heck coupling reaction. The in situ formed Pd nanoparticles during Heck reaction were removed from the reaction medium and analyzed using HR-TEM to estimate the sizes of the Pd nanoparticles. Complex [Pd(ONO)((N-benzylcarbamothioyl)benzamide)] (1) which does not possess any substituent on the benzyl moiety of acylthiourea produced the smallest Pd nanoparticles with the average particle size of 3.7?nm. Hence, complex 1 showed the utmost catalytic activity. With complex 1, 51–99% of conversion was observed during Heck coupling reaction of styrene with various aryl halides. XPS results confirmed that the recovered black particles were Pd(0). A reasonable recyclability results were achieved by these in situ generated Pd nanoparticles. Graphic Abstract: [Figure not available: see fulltext.]
Aminomethylpyridinequinones as new ligands for PEPPSI-type complexes
Gajda, Roman,Poater, Albert,Brotons-Rufes, Artur,Planer, Sebastian,Wo?niak, Krzysztof,Grela, Karol,Kajetanowicz, Anna
, p. 138 - 156 (2021/03/22)
A set of six new catalysts possessing quinone moieties in a pyridine ligand was synthesized and fully characterized by standard analytical techniques, including X-Ray crystallography. The results obtained in Suzuki and Mizoroki–Heck cross-coupling reactions catalyzed by quinone-based compounds were comparable to these obtained in the presence of the original PEPPSI complex designed by Organ. DFT calculations allow to see the structural and electronic factors to describe their similarity. On the other hand, steric maps and NCI plots were the tools to have a more global view of the systems studied, leaving the sphere of reactivity around the metal.
An Amine-Assisted Ionic Monohydride Mechanism Enables Selective Alkyne cis-Semihydrogenation with Ethanol: From Elementary Steps to Catalysis
Huang, Zhidao,Wang, Yulei,Leng, Xuebing,Huang, Zheng
supporting information, p. 4824 - 4836 (2021/04/07)
The selective synthesis of Z-alkenes in alkyne semihydrogenation relies on the reactivity difference of the catalysts toward the starting materials and the products. Here we report Z-selective semihydrogenation of alkynes with ethanol via a coordination-induced ionic monohydride mechanism. The EtOH-coordination-driven Cl- dissociation in a pincer Ir(III) hydridochloride complex (NCP)IrHCl (1) forms a cationic monohydride, [(NCP)IrH(EtOH)]+Cl-, that reacts selectively with alkynes over the corresponding Z-alkenes, thereby overcoming competing thermodynamically dominant alkene Z-E isomerization and overreduction. The challenge for establishing a catalytic cycle, however, lies in the alcoholysis step; the reaction of the alkyne insertion product (NCP)IrCl(vinyl) with EtOH does occur, but very slowly. Surprisingly, the alcoholysis does not proceed via direct protonolysis of the Ir-C(vinyl) bond. Instead, mechanistic data are consistent with an anion-involved alcoholysis pathway involving ionization of (NCP)IrCl(vinyl) via EtOH-for-Cl substitution and reversible protonation of Cl- ion with an Ir(III)-bound EtOH, followed by β-H elimination of the ethoxy ligand and C(vinyl)-H reductive elimination. The use of an amine is key to the monohydride mechanism by promoting the alcoholysis. The 1-amine-EtOH catalytic system exhibits an unprecedented level of substrate scope, generality, and compatibility, as demonstrated by Z-selective reduction of all alkyne classes, including challenging enynes and complex polyfunctionalized molecules. Comparison with a cationic monohydride complex bearing a noncoordinating BArF- ion elucidates the beneficial role of the Cl- ion in controlling the stereoselectivity, and comparison between 1-amine-EtOH and 1-NaOtBu-EtOH underscores the fact that this base variable, albeit in catalytic amounts, leads to different mechanisms and consequently different stereoselectivity.
METHODS OF ARENE ALKENYLATION
-
Page/Page column 18; 24; 52; 55-56; 59, (2021/11/26)
The present disclosure provides for a rhodium-catalyzed oxidative arene alkenylation from arenes and styrenes to prepare stilbene and stilbene derivatives. For example, the present disclosure provides for method of making arenes or substituted arenes, in particular stilbene and stilbene derivatives, from a reaction of an optionally substituted arene and/or optionally substituted styrene. The reaction includes a Rh catalyst or Rh pre-catalyst material and an oxidant, where the Rh catalyst or Rh catalyst formed Rh pre-catalyst material selectively functionalizes CH bond on the arene compound (e.g., benzene or substituted benzene).
Chemoselective semihydrogenation of alkynes catalyzed by manganese(i)-PNP pincer complexes
Bachmann, Stephan,Beller, Matthias,Budweg, Svenja,Garbe, Marcel,Hornke, Helen,Jiao, Haijun,Junge, Kathrin,Papa, Veronica,Scalone, Michelangelo,Spannenberg, Anke,Wei, Zhihong
, p. 3994 - 4001 (2020/07/09)
A general manganese catalyzed chemoselective semihydrogenation of alkynes to olefins in the presence of molecular hydrogen is described. The best results are obtained by applying the aliphatic Mn PNP pincer complex Mn-3c which allows the transformation of various substituted internal alkynes to the respective Z-olefins under mild conditions and in high yields. Mechanistic investigations based on experiments and computations indicate the formation of the Z-isomer via an outer-sphere mechanism.
Synthesis and characterization of mesoporous organosilica supported palladium (SBA-Pr-NCQ-Pd) as an efficient nanocatalyst in the Mizoroki–Heck coupling reaction
Moradi, Razieh,Mohammadi Ziarani, Ghodsi,Badiei, Alireza,Mohajer, Fatemeh
, (2020/10/02)
In the present study, the modification of a mesoporous organosilica nanocomposite SBA-15 (Santa Barbara Amorphous 15) was carried out in two steps, first through the surface functionalization of SBA-Pr-NH2 with 2-chloroquinoline-3-carbaldehyde to form SBA-Pr-NCQ, and then through a post-modification process with palladium ions. The target nanocompound structure of SBA-Pr-NCQ-Pd was characterized by different techniques (thermogravimetric analysis, X-ray diffraction, scanning electron microscopy, Energy-dispersive X-ray spectroscopy (EDX), and Fourier transform infrared spectroscopy). The catalytic performance of the porous inorganic–organic hybrid nanocomposite (SBA-Pr-NCQ-Pd) in one of the most important carbon–carbon bond-forming processes, the Mizoroki–Heck coupling reaction of aryl halides and methacrylate in water/ethanol media, was examined. Compared to previous reports, this protocol afforded some advantages, such as high yields of products, short reaction times, catalyst stability without leaching, simple methodology, easy workup, and greener conditions. Also, the nanocatalyst can be easily separated from the reaction mixture and reused several times without a significant decrease in activity and promises economic as well as environmental benefits.
Stereoselective Rhodium-Catalyzed Isomerization of Stereoisomeric Mixtures of Arylalkenes
Yang, Hongxuan,Dong, Wenke,Wang, Wencan,Li, Tao,Zhao, Wanxiang
supporting information, p. 2833 - 2840 (2020/10/06)
A new efficient method for the synthesis of a high ratio of E -alkenes from E / Z mixtures of alkenes with B 2pin 2in the presence of a rhodium catalyst is described. This reaction features mild reaction conditions, broad functional group tolerance, and highly great application potential.
E, Z -Selectivity in the reductive cross-coupling of two benzaldehydes to stilbenes under substrate control
Arkhypchuk, Anna I.,D'Imperio, Nicolas,Ott, Sascha
supporting information, p. 6171 - 6179 (2020/10/21)
Unsymmetrical E- and Z-stilbenes can be synthesized from two differently substituted benzaldehydes in a MesP(TMS)Li-promoted reductive coupling sequence. Depending on the order of addition of the two coupling partners, the same olefin can be produced in either E- or Z-enriched form under identical reaction conditions. A systematic study of the correlation between the stereochemical outcome of the reaction and the substitution pattern at the two aldehydes is presented. The results can be used as guidelines to predict the product stereochemistry. This journal is
Syntheses of diarylethenes by perylene-catalyzed photodesulfonylation from ethenyl sulfones
Adachi, Kazumasa,Dakegata, Aki,Fukuyama, Takahide,Okuda, Yasuhiro,Orita, Akihiro,Ryu, Ilhyong,Takemoto, Mai,Wakamatsu, Kan,Watanabe, Hikaru
, p. 409 - 412 (2020/04/27)
Diarylethenes were obtained from the corresponding ethenyl sulfones by photocatalyzed desulfonylation using UV or blue LEDs. When perylene and i-Pr2NEt were used as a photocatalyst and a sacrificing reagent, respectively, this desulfonylation proceeded smoothly to afford the desired ethenes with the functional groups such as chloro, alkoxy and heteroaromatic rings remaining untouched. The use of a flow photoreactor enabled this desulfonylation to proceed more rapidly to finish in an hour of residence time.