50653-07-1Relevant articles and documents
Silylation of Alcohols, Phenols, and Silanols with Alkynylsilanes – an Efficient Route to Silyl Ethers and Unsymmetrical Siloxanes
Kuciński, Krzysztof,Stachowiak, Hanna,Hreczycho, Grzegorz
, p. 4042 - 4049 (2020/07/04)
The formation of several silyl ethers (alkoxysilanes, R3Si-OR') and unsymmetrical siloxanes (R3Si-O-SiR'3) can be catalyzed by the commercially available potassium bis(trimethylsilyl)amide (KHMDS). The reaction proceeds via direct dealkynative coupling between various alcohols or silanols and alkynylsilanes, with a simultaneous formation of gaseous acetylene as the sole by-product. The dehydrogenative and dealkenative coupling of alcohols or silanols are well-investigated, whilst the utilization of alkynylsilanes as silylating agents has never been comprehensively studied in this context. Overall, the presented system allows the synthesis of various attractive organosilicon compounds under mild conditions, making this approach an atom-efficient, environmentally benign, and sustainable alternative to existing synthetic solutions.
Graphene oxide-bound electron-deficient tin(IV) porphyrin: a highly efficient and selective catalyst for trimethylsilylation of alcohols and phenols with hexamethyldisilazane
Zarrinjahan, Alireza,Moghadam, Majid,Mirkhani, Valiollah,Tangestaninejad, Shahram,Mohammadpoor-Baltork, Iraj
, (2017/02/05)
The catalytic activity of graphene oxide-bound tetrakis(p-aminophenyl)porphyrinatotin(IV) trifluoromethanesulfonate, [SnIV(TNH2PP)(OTf)2], in the trimethylsilylation of alcohols and phenols with hexamethyldisilazane (HMDS) is reported. The prepared catalyst was characterized using inductively coupled plasma analysis, scanning electron microscopy, transmission electron microscopy, and Fourier transform infrared and diffuse reflectance UV–visible spectroscopies. This heterogeneous catalyst was used for selective trimethylsilylation of various alcohols and phenols with HMDS in short reaction times and high yields. Also, the catalyst is of high reusability and stability, in that it was recovered several times without loss of its initial activity. The chemoselectivity of this catalytic system in the silylation of primary alcohols in the presence of secondary and tertiary alcohols and also phenols was investigated.
Nanomagnetic zirconia-based sulfonic acid (Fe3O4@ZrO2-Pr-SO3H): A new, efficient and recyclable solid acid catalyst for the protection of alcohols: Via HMDS under solvent free conditions
Tadjarodi, Azadeh,Khodikar, Rahim,Ghafuri, Hosssein
, p. 63480 - 63487 (2016/07/19)
In the present work, sulfonic acid functionalized nanomagnetic zirconia is prepared by the reaction of (3-mercaptopropyl)trimethoxysilane and nanomagnetic zirconia. Then, nanomagnetic zirconia-based sulfonic acid (Fe3O4@ZrO2/su
RuIII(OTf)SalophenCH2-NHSiO2-Fe: An efficient and magnetically recoverable catalyst for trimethylsilylation of alcohols and phenols with hexamethyldisilazane
Torki, Maryam,Tangestaninejad, Shahram,Mirkhani, Valiollah,Moghadam, Majid,Mohammadpoor-Baltork, Iraj
, p. 304 - 309 (2014/04/03)
Efficient trimethylsilylation of alcohols and phenols with hexamethyldisilazane (HMDS) catalyzed by ruthenium(III) complex of chloromethylated Salophen supported on nanomagnetic materials is reported. First, the iron nanomagnets were silica coated, functi
Preparation, characterization and use of 1,3-disulfonic acid imidazolium hydrogen sulfate as an efficient, halogen-free and reusable ionic liquid catalyst for the trimethylsilyl protection of hydroxyl groups and deprotection of the obtained trimethylsilanes
Shirini, Farhad,Khaligh, Nader Ghaffari,Akbari-Dadamahaleh, Somayeh
, p. 15 - 23 (2013/01/14)
Novel 1,3-disulfonic acid imidazolium hydrogen sulfate, a halogen-free ionic liquid, is a recyclable and eco-benign catalyst for the trimethylsilyl protection of hydroxyl groups at room temperature under solvent free conditions to afford trimethylsilanes in excellent yields (92-100%) and in very short reaction times (1-5 min). Deprotection of the resulting trimethylsilanes can also be achieved using the same catalyst in methanol. The catalyst was characterized by IR, 1H NMR, 13C NMR and MS studies. All the products were extensively characterized by IR, 1H NMR, MS, and elemental and melting point analyses. This new method consistently has the advantages of excellent yields and short reaction times. Further, the catalyst can be recovered and reused for several times without loss of activity. The work-up of the reaction consists of a simple separation, followed by concentration of the crude product and purification.
Electron-deficient vanadium(IV) tetraphenylporphyrin: A new, highly efficient and reusable catalyst for chemoselective trimethylsilylation of alcohols and phenols with hexamethyldisilazane
Moghadam, Majid,Mohammadpoor-Baltork, Iraj,Tangestaninejad, Shahram,Mirkhani, Valiollah,Khosropour, Ahmad Reza,Taghavi, S. Abdolmanaf
experimental part, p. 687 - 694 (2012/01/06)
In the present work, the application of electron-deficient tetraphenylporphyrinatovanadium(IV) trifluoromethanesulfonate, [V IV(TPP)(OTf)2], in the trimethylsilylation of alcohols and phenols with hexamethydisilazane (HMDS) is reported. This new V(IV) catalyst was used as an efficient catalyst for silylation of not only primary alcohols but also sterically hindered secondary and tertiary alcohols with HMDS. Trimethylsilylation of phenols with HMDS was also performed to afford the desired Trimethylsilyl ethers (TMS) ethers. The chemoselectivity of this method was also investigated. This catalyst can be reused several times without loss of its activity. Copyright
Silylation of alcohols and phenols with hexamethyldisilazane over highly reusable propyl sulfonic acid functionalized nanostructured SBA-15
Zareyee, Daryoush,Asghari, Rezvaneh,Khalilzadeh, Mohammad A.
experimental part, p. 1864 - 1868 (2012/02/16)
Various alcohols and phenols were trimethylsilylated in excellent yields using hexamethyldisilazane in the presence of catalytic amounts of environmentally friendly, hydrophobic, highly thermal stable, and completely heterogeneous sulfonic acid functionalized mesostructured SBA-15 in dichloromethane at ambient temperature. Primary, bulky secondary, tertiary, and phenolic hydroxyl functional groups were transformed to the corresponding trimethylsilyl ethers in excellent yields. The simple experimental procedure was accompanied by easy recovery and the catalyst was reusable (at least 18 reaction cycles); these are attractive features of this protocol.
Sulfonated ordered nanoporous carbon (CMK-5-SO3H) as an efficient and highly recyclable catalyst for the silylation of alcohols and phenols with hexamethyldisilazane (HMDS)
Zareyee, Daryoush,Ghandali, Mohammad S.,Khalilzadeh, Mohammad A.
experimental part, p. 1521 - 1525 (2012/06/18)
An environmentally friendly catalytic system for trimethylsilylation of alcohols and phenols with hexamethyldisilazane can be successfully carried out for the first time over sulfonated mesoporous carbon catalyst (CMK-5-SO 3H) in dichloromethane at ambient temperature and excellent conversions were obtained. Furthermore, the catalyst displays high activity and thermal stability (to 200 °C) and it can be reused repeatedly for at least 25 cycles without any evidence of loss of activity, confirming the stability of covalent bonding of acidic centers.
[SnIV(TPP)(BF4)2]: An efficient and reusable catalyst for chemoselective trimethylsilylation of alcohols and phenols with hexamethyldisilazane
Moghadam, Majid,Tangestaninejad, Shahram,Mirkhani, Valiollah,Mohammadpoor-Baltork, Iraj,Gharaati, Shadab
experimental part, p. 212 - 219 (2010/04/04)
Tin(IV)tetraphenylporphyrinato tetrafluoroborate, [SnIV(TPP)(BF4)2], was used as an efficient catalyst for trimethylsilylation of alcohols and phenols with hexamethyldisilazane (HMDS). High-valent [SnIV(TPP)(BF4)2] catalyzes trimethylsilylation of primary, secondary and tertiary alcohols as well as phenols, and the corresponding TMS-ethers were obtained in high yields and short reaction times at room temperature. While, under the same reaction conditions [SnIV(TPP)Cl2] is less efficient to catalyze these reactions. One important feature of this catalyst is its ability in the chemoselective silylation of primary alcohols in the presence of secondary and tertiary alcohols and phenols. The catalyst was reused several times without loss of its catalytic activity.
A novel and highly efficient method for the silylation of alcohols with hexamethyldisilazane (HMDS) catalyzed by recyclable sulfonic acid-functionalized ordered nanoporous silica
Zareyee, Daryoush,Karimi, Babak
, p. 1277 - 1280 (2007/10/03)
Silylation of alcohols with hexamethyldisilazane (HMDS) in dichloromethane provides the corresponding silyl ethers in almost quantitative yields at room temperature using 1-3 mol % of sulfonic acid-functionalized silica. Additionally, the catalyst display