Welcome to LookChem.com Sign In|Join Free

CAS

  • or

5331-28-2

Post Buying Request

5331-28-2 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

5331-28-2 Usage

Chemical class

Benzene

Usage

Widely used in the production of various industrial and consumer products

Characterized by

Presence of a tert-butyl group and a phenoxy group attached to a benzene ring

Chemical and physical properties

Unique due to the presence of the tert-butyl and phenoxy groups

Uses

Precursor in the synthesis of other organic compounds, intermediate in the production of fragrances, dyes, and polymers, potential use in pharmaceutical applications.

Check Digit Verification of cas no

The CAS Registry Mumber 5331-28-2 includes 7 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 4 digits, 5,3,3 and 1 respectively; the second part has 2 digits, 2 and 8 respectively.
Calculate Digit Verification of CAS Registry Number 5331-28:
(6*5)+(5*3)+(4*3)+(3*1)+(2*2)+(1*8)=72
72 % 10 = 2
So 5331-28-2 is a valid CAS Registry Number.
InChI:InChI=1/C16H18O/c1-16(2,3)13-9-11-15(12-10-13)17-14-7-5-4-6-8-14/h4-12H,1-3H3

5331-28-2SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 17, 2017

Revision Date: Aug 17, 2017

1.Identification

1.1 GHS Product identifier

Product name 1-tert-butyl-4-phenoxybenzene

1.2 Other means of identification

Product number -
Other names 4-t-butylphenyl phenyl ether

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:5331-28-2 SDS

5331-28-2Relevant articles and documents

Ligand- and Counterion-Assisted Phenol O-Arylation with TMP-Iodonium(III) Acetates

Kikushima, Kotaro,Miyamoto, Naoki,Watanabe, Kazuma,Koseki, Daichi,Kita, Yasuyuki,Dohi, Toshifumi

, p. 1924 - 1928 (2022/03/27)

High reactivity of trimethoxyphenyl (TMP)-iodonium(III) acetate for phenol O-arylation was achieved. It was first determined that the TMP ligand and acetate anion cooperatively enhance the electrophilic reactivity toward phenol oxygen atoms. The proposed method provides access to various diaryl ethers in significantly higher yields than the previously reported techniques. Various functional groups, including aliphatic alcohol, boronic ester, and sterically hindered groups, were tolerated during O-arylation, verifying the applicability of this ligand- and counterion-assisted strategy.

Synergistic effect of copper nanocrystals-nanoparticles incorporated in a porous organic polymer for the Ullmann C-O coupling r–eaction

Gorginpour, Forough,Zali-Boeini, Hassan

, (2021/02/22)

A quinoxaline-based porous organic polymer (Q-POP) as a mesoporous organic copolymer was developed as a new platform for the immobilization of CuNPs and copper nanocrystals. The prepared materials were characterized by FT-IR, XRD, N2 adsorption-desorption isotherms, ICP, TGA, SEM, HR-TEM, EDX, and single-crystal X-ray crystallography. The obtained catalyst presented extraordinary catalytic activity towards Ullmann C–O coupling reactions with high surface area, hierarchical porosity, and excellent thermal and chemical stability. Due to its high porosity, and synergistic effect of copper nanocrystals incorporated in the polymer composite, the as-synthesized catalyst was successfully utilized for the Ullmann C–O coupling reaction of phenols and different aryl halides to prepare various diaryl ether derivatives. All types of aryl halides (except aryl fluorides) were screened in the Ullmann C–O coupling reaction with phenols to produce diaryl ethers in good to excellent yields (70–97 %), and it was found that aryl iodides have the best results. Besides, due to the strong interactions between CuNPs, N, and O-atoms of quinoxaline moiety existing in the polymeric framework, the copper leaching from the support was not observed. Furthermore, the catalyst was recycled and reused for five consecutive runs without significant activity loss.

URJC-1-MOF as New Heterogeneous Recyclable Catalyst for C-Heteroatom Coupling Reactions

Mu?oz, Antonio,Leo, Pedro,Orcajo, Gisela,Martínez, Fernando,Calleja, Guillermo

, p. 3376 - 3380 (2019/07/04)

Guillermo Calleja and co-workers from @urjc describe URJC-1-MOF as a new heterogeneous recyclable catalyst for c-heteroatom coupling reactions. The capacity of copper-based URJC-1-MOF as a MOF catalyst in cross-coupling reactions has been evaluated, focusing on the Chan-Lam-Evans arylation-type reactions on amines and alcohols without extra additives or ligands. The extraordinary chemical and structural stability of URJC-1-MOF and its good specific surface, make this material a promising alternative to homogeneous Cu (II) catalysts for cross-coupling reactions. URJC-1-MOF showed a remarkable catalytic activity for cross-coupling C?N and C?O reactions, higher than other heterogeneous and homogeneous copper-based catalyst, such as CuO, HKUST-1, Cu?MOF-74, Cu(OAc)2 and CuSO4?5H2O. Moreover, its easy recovery by simple filtration and reusability in successive runs without any loss of activity and stability, demonstrates the potential of URJC-1-MOF as an alternative catalyst for this kind of reactions in different chemical media of industrial interest.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 5331-28-2