Welcome to LookChem.com Sign In|Join Free

CAS

  • or

5631-70-9

Post Buying Request

5631-70-9 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

5631-70-9 Usage

Uses

4'',5,7-Trimethoxyflavone is significantly effective at inhibiting proliferation of SNU-16 human gastric cancer cells in a concentration dependent manner.

Check Digit Verification of cas no

The CAS Registry Mumber 5631-70-9 includes 7 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 4 digits, 5,6,3 and 1 respectively; the second part has 2 digits, 7 and 0 respectively.
Calculate Digit Verification of CAS Registry Number 5631-70:
(6*5)+(5*6)+(4*3)+(3*1)+(2*7)+(1*0)=89
89 % 10 = 9
So 5631-70-9 is a valid CAS Registry Number.
InChI:InChI=1/C18H16O5/c1-20-12-6-4-11(5-7-12)15-10-14(19)18-16(22-3)8-13(21-2)9-17(18)23-15/h4-10H,1-3H3

5631-70-9SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 17, 2017

Revision Date: Aug 17, 2017

1.Identification

1.1 GHS Product identifier

Product name 5,7-dimethoxy-2-(4-methoxyphenyl)chromen-4-one

1.2 Other means of identification

Product number -
Other names 4',5,7-Trimethyl-apigenin

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:5631-70-9 SDS

5631-70-9Relevant articles and documents

Size and branching effects on the fluorescence of benzylic dendrimers possessing one apigenin fluorophore at the core

Vin?, Petr,Vermachová, Martina,Dra?ar, Pavel,Del Barrio, Melisa,Jarne, Carmen,Cebolla, Vicente L.,De Cózar, Abel,Zangi, Ronen,Cossío, Fernando P.

, p. 10361 - 10368 (2013)

Different generations of dendrimers incorporating one fluorescent core of apigenin and three Fréchet benzylic dendrons have been prepared. The chief geometric features of these dendrimers have been obtained by Molecular Dynamics simulations. These computa

Flavonoid-based inhibitors of the Phi-class glutathione transferase from black-grass to combat multiple herbicide resistance

Brazier-Hicks, Melissa,Coxon, Christopher R.,Cummins, Ian,Edwards, Robert,Eno, Rebecca F. M.,Freitag-Pohl, Stefanie,Hughes, David J.,Mitchell, Glynn,Moore, Jenny,Onkokesung, Nawaporn,Pohl, Ehmke,Schwarz, Maria,Steel, Patrick G.,Straker, Hannah E.,Wortley, David J.

, p. 9211 - 9222 (2021/11/16)

The evolution and growth of multiple-herbicide resistance (MHR) in grass weeds continues to threaten global cereal production. While various processes can contribute to resistance, earlier work has identified the phi class glutathione-S-transferase (AmGSTF1) as a functional biomarker of MHR in black-grass (Alopecurus myosuroides). This study provides further insights into the role of AmGSTF1 in MHR using a combination of chemical and structural biology. Crystal structures of wild-type AmGSTF1, together with two specifically designed variants that allowed the co-crystal structure determination with glutathione and a glutathione adduct of the AmGSTF1 inhibitor 4-chloro-7-nitro-benzofurazan (NBD-Cl) were obtained. These studies demonstrated that the inhibitory activity of NBD-Cl was associated with the occlusion of the active site and the impediment of substrate binding. A search for other selective inhibitors of AmGSTF1, using ligand-fishing experiments, identified a number of flavonoids as potential ligands. Subsequent experiments using black-grass extracts discovered a specific flavonoid as a natural ligand of the recombinant enzyme. A series of related synthetic flavonoids was prepared and their binding to AmGSTF1 was investigated showing a high affinity for derivatives bearing a O-5-decyl-α-carboxylate. Molecular modelling based on high-resolution crystal structures allowed a binding pose to be defined which explained flavonoid binding specificity. Crucially, high binding affinity was linked to a reversal of the herbicide resistance phenotype in MHR black-grass. Collectively, these results present a nature-inspired new lead for the development of herbicide synergists to counteract MHR in weeds. This journal is

Synthesis method of isolicoflavonol

-

Paragraph 0111; 0239-0245, (2020/12/29)

The invention provides a synthesis method of isolicoflavonol, which comprises the following steps: carrying out condensation reaction on 2,4-O-R1(protective group, the same below)-6-hydroxyacetophenone and 4-O-R2(protective group, the same below)-benzaldehyde to generate 2',4'-O-R1-6'-hydroxy-4-O-R2-chalcone; oxidizing the chalcone to generate flavonol; carrying out selective protection on 3-OH ofthe flavonol to obtain 3,5,7-O-R1-4'-O-R2-flavonol; removing the protecting group R2 from the 3,5,7-O-R1-4'-O-R2-flavonol to obtain 3,5,7-O-R1-4'-hydroxyflavonol; carrying out 1,1-dimethylpropargyl reaction on the 4,4'-OH site to obtain 3,5,7-O-R1-4'-O-(1',1''-dimethyl propargyl)flavonol; carrying out partial hydrogenation on the alkynyl of the 3,5,7-O-R1-4'-O-(1',1''-dimethyl propargyl)flavonolunder the action of a catalyst to obtain 3,5,7-O-R1-4'-O-(1',1''-dimethylpropenyl)flavonol and carrying out Claisen rearrangement on the 3,5,7-O-R1-4'-O-(1',1''-dimethylpropenyl)flavonol to obtain 3,5,7-O-R1-isolicoflavonol, and removing the protecting group R1 from the 3,5,7-O-R1-isolicoflavonol to obtain the isolicoflavonol.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 5631-70-9