Welcome to LookChem.com Sign In|Join Free

CAS

  • or

5822-13-9

Post Buying Request

5822-13-9 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

5822-13-9 Usage

General Description

N-Benzyl-1,2-phenylenediamine is a chemical compound with the molecular formula C13H14N2. It is commonly used as an antioxidant and stabilizer in rubber and plastic products, as well as in hair dyes and other cosmetics. N-Benzyl-1,2-phenylenediamine also has applications in the production of dyes and pigments, and as an intermediate in organic synthesis. However, it is important to note that N-Benzyl-1,2-phenylenediamine has been identified as a potential skin irritant and allergen, and there are concerns about its potential health effects with prolonged or repeated exposure. Therefore, proper handling and safety measures should be taken when working with this chemical.

Check Digit Verification of cas no

The CAS Registry Mumber 5822-13-9 includes 7 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 4 digits, 5,8,2 and 2 respectively; the second part has 2 digits, 1 and 3 respectively.
Calculate Digit Verification of CAS Registry Number 5822-13:
(6*5)+(5*8)+(4*2)+(3*2)+(2*1)+(1*3)=89
89 % 10 = 9
So 5822-13-9 is a valid CAS Registry Number.
InChI:InChI=1S/C13H14N2/c14-12-8-4-5-9-13(12)15-10-11-6-2-1-3-7-11/h1-9,15H,10,14H2

5822-13-9SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 19, 2017

Revision Date: Aug 19, 2017

1.Identification

1.1 GHS Product identifier

Product name N1-Benzylbenzene-1,2-diamine

1.2 Other means of identification

Product number -
Other names 2-N-benzylbenzene-1,2-diamine

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:5822-13-9 SDS

5822-13-9Relevant articles and documents

Discovery of 1-(5-(1H-benzo[d]imidazole-2-yl)-2,4-dimethyl-1H-pyrrol-3-yl)ethan-1-one derivatives as novel and potent bromodomain and extra-terminal (BET) inhibitors with anticancer efficacy

Bian, Yuanyuan,Chen, Yadong,Hong, Qianqian,Jiang, Fei,Kong, Bo,Li, Hongmei,Lu, Tao,Ma, Yu,Ran, Ting,Tang, Weifang,Wang, Cong,Yang, Na,Zhang, Zhimin,Zheng, Wan,Zhu, Jiapeng,Zhu, Zhaohong

, (2021/11/03)

As epigenetic readers, bromodomain and extra-terminal domain (BET) family proteins bind to acetylated-lysine residues in histones and recruit protein complexes to promote transcription initiation and elongation. Inhibition of BET bromodomains by small molecule inhibitors has emerged as a promising therapeutic strategy for cancer. Herein, we describe our efforts toward the discovery of a novel series of 1-(5-(1H-benzo[d]imidazole-2-yl)-2,4-dimethyl-1H-pyrrol-3-yl)ethan-1-one derivatives as BET inhibitors. Intensive structural modifications led to the identification of compound 35f as the most active inhibitor of BET BRD4 with selectivity against BET family proteins. Further biological studies revealed that compound 35f can arrest the cell cycle in G0/G1 phase and induce apoptosis via decreasing the expression of c-Myc and other proteins related to cell cycle and apoptosis. More importantly, compound 35f showed favorable pharmacokinetic properties and antitumor efficacy in MV4-11 mouse xenograft model with acceptable tolerability. These results indicated that BET inhibitors could be potentially used to treat hematologic malignancies and some solid tumors.

Cyclic (Alkyl)(amino)carbene Ligand-Promoted Nitro Deoxygenative Hydroboration with Chromium Catalysis: Scope, Mechanism, and Applications

Zhao, Lixing,Hu, Chenyang,Cong, Xuefeng,Deng, Gongda,Liu, Liu Leo,Luo, Meiming,Zeng, Xiaoming

supporting information, p. 1618 - 1629 (2021/01/25)

Transition metal catalysis that utilizes N-heterocyclic carbenes as noninnocent ligands in promoting transformations has not been well studied. We report here a cyclic (alkyl)(amino)carbene (CAAC) ligand-promoted nitro deoxygenative hydroboration with cost-effective chromium catalysis. Using 1 mol % of CAAC-Cr precatalyst, the addition of HBpin to nitro scaffolds leads to deoxygenation, allowing for the retention of various reducible functionalities and the compatibility of sensitive groups toward hydroboration, thereby providing a mild, chemoselective, and facile strategy to form anilines, as well as heteroaryl and aliphatic amine derivatives, with broad scope and particularly high turnover numbers (up to 1.8 × 106). Mechanistic studies, based on theoretical calculations, indicate that the CAAC ligand plays an important role in promoting polarity reversal of hydride of HBpin; it serves as an H-shuttle to facilitate deoxygenative hydroboration. The preparation of several commercially available pharmaceuticals by means of this strategy highlights its potential application in medicinal chemistry.

Mimicking transition metals in borrowing hydrogen from alcohols

Banik, Ananya,Ahmed, Jasimuddin,Sil, Swagata,Mandal, Swadhin K.

, p. 8353 - 8361 (2021/07/02)

Borrowing hydrogen from alcohols, storing it on a catalyst and subsequent transfer of the hydrogen from the catalyst to anin situgenerated imine is the hallmark of a transition metal mediated catalyticN-alkylation of amines. However, such a borrowing hydrogen mechanism with a transition metal free catalytic system which stores hydrogen molecules in the catalyst backbone is yet to be established. Herein, we demonstrate that a phenalenyl ligand can imitate the role of transition metals in storing and transferring hydrogen molecules leading to borrowing hydrogen mediated alkylation of anilines by alcohols including a wide range of substrate scope. A close inspection of the mechanistic pathway by characterizing several intermediates through various spectroscopic techniques, deuterium labelling experiments, and DFT study concluded that the phenalenyl radical based backbone sequentially adds H+, H˙ and an electron through a dearomatization process which are subsequently used as reducing equivalents to the C-N double bond in a catalytic fashion.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 5822-13-9