Welcome to LookChem.com Sign In|Join Free

CAS

  • or
4-Bromo-4'-methoxybiphenyl is an organic compound characterized by the presence of a bromine atom at the 4-position and a methoxy group at the 4'-position of a biphenyl molecule. It is known for its unique chemical properties and potential applications in various industries.

58743-83-2

Post Buying Request

58743-83-2 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

58743-83-2 Usage

Uses

Used in Polymer Industry:
4-Bromo-4'-methoxybiphenyl is used as a monomer for the synthesis of various polymers due to its reactive bromine and methoxy groups. These polymers find applications in the production of fibers, films, sheets, coatings, adhesives, and thermoplastic elastomers.
Used in Chemical Synthesis:
4-Bromo-4'-methoxybiphenyl serves as an intermediate in the synthesis of various organic compounds, including pharmaceuticals, agrochemicals, and specialty chemicals. Its unique structural features make it a valuable building block for the development of new molecules with specific properties and functions.
Used in Research and Development:
Due to its unique chemical structure, 4-Bromo-4'-methoxybiphenyl is often utilized in research and development for studying various chemical reactions and exploring new synthetic pathways. It can also be employed as a reference compound for analytical and characterization techniques in the field of organic chemistry.

Check Digit Verification of cas no

The CAS Registry Mumber 58743-83-2 includes 8 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 5 digits, 5,8,7,4 and 3 respectively; the second part has 2 digits, 8 and 3 respectively.
Calculate Digit Verification of CAS Registry Number 58743-83:
(7*5)+(6*8)+(5*7)+(4*4)+(3*3)+(2*8)+(1*3)=162
162 % 10 = 2
So 58743-83-2 is a valid CAS Registry Number.

58743-83-2SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 12, 2017

Revision Date: Aug 12, 2017

1.Identification

1.1 GHS Product identifier

Product name 1-bromo-4-(4-methoxyphenyl)benzene

1.2 Other means of identification

Product number -
Other names 4-bromo-4'-methoxy-biphenyl

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:58743-83-2 SDS

58743-83-2Relevant articles and documents

Synthesis and characterization of methoxy- or cyano-substituted thiophene/phenylene co-oligomers for lasing application

G?ttlich, Richard,Herr, Jasmin,Matsuo, Takumi,Mizuno, Hitoshi,R?ssiger, Carina,Sasaki, Fumio,Schlettwein, Derck,Yanagi, Hisao

, p. 24057 - 24062 (2020)

As new candidates of thiophene/phenylene co-oligomer (TPCO) species, 5,5′′-bis(4′-methoxy-[1,1′-biphenyl]-4-yl)-2,2′:5′,2′′-terthiophene (BP3T-OMe) and 4′,4′′′-([2,2′:5′,2′′-terthiophene]-5,5′′-diyl)bis(([1,1′-biphenyl]-4-carbonitrile)) (BP3T-CN) were synthesized for lasing applications. Although most unsubstituted TPCO species crystallize in monoclinic form, BP3T-OMe and BP3T-CN crystallized in orthorhombic and triclinic forms, respectively. Since the unsubstituted species, 5,5′′-bis(4-biphenylyl)-2,2′:5′,2′′-terthiophene (BP3T), shows unique and superior lasing performance in single crystals, the newly synthesized BP3T-OMe and BP3T-CN have possibilities to show different or improved optoelectronic characteristics. Amplified spontaneous emission (ASE) and optically pumped lasing were observed from both of the single crystals based on their well-shaped crystalline cavity and high group refractive index values of 3.7-5.3 for excellent light confinement. The lasing threshold for the BP3T-OMe crystal was lower than that for the BP3T-CN crystal, which was attributed to their different molecular orientation, standing in the former and inclining in the latter. This journal is

Visible Light Induced Aerobic Coupling of Arylboronic Acids Promoted by Hydrazone

Xia, Hongyu,Wang, Ganghu,Zhao, Dongbo,Zhu, Chunyin

supporting information, p. 922 - 929 (2022/02/10)

A visible-light-induced oxidative coupling of arylboronic acids has been developed for the synthesis of biaryls. The reaction that employs polydentate hydrazones as the bifunctional catalyst works smoothly under room temperature. It is compatible with a w

N-Methylphenothiazine S-Oxide Enabled Oxidative C(sp2)–C(sp2) Coupling of Boronic Acids with Organolithiums via Phenothiaziniums

Yoshida, Tatsuki,Honda, Yuki,Morofuji, Tatsuya,Kano, Naokazu

, p. 9664 - 9668 (2021/12/17)

Herein, we report the development of a transition-metal-free oxidative C(sp2)–C(sp2) coupling of readily available boronic acids and organolithiums via phenothiazinium ions. Various biaryl, styrene, and diene derivatives were obtained using this reaction system. The key to this process is N-methylphenothiazine S-oxide (PTZSO), which allows efficient conversion of boronic acids to phenothiazinium ions. The mechanism of phenothiazinium formation using PTZSO was investigated using theoretical calculations and experiments, which provided insight into the unique reactivity of PTZSO.

Pyrazole-Mediated C-H Functionalization of Arene and Heteroarenes for Aryl-(Hetero)aryl Cross-Coupling Reactions

Kundu, Abhishek,Dey, Dhananjay,Pal, Subhankar,Adhikari, Debashis

, p. 15665 - 15673 (2021/11/16)

Herein we introduce a transition-metal-free protocol that involves a commercially available, inexpensive pyrazole molecule to conduct C-C cross-coupling reactions at room temperature via a radical pathway. Using this method, an aryldiazonium salt has been coupled to a wide range of arenes and heteroarenes including benzene, mesitylene, thiophene, furan, benzoxazole to result the corresponding biaryl products. The full reaction mechanism is elucidated along with the crystallographic probation of an active initiator species. A potassium-stabilized deprotonated pyrazole steers single-electron transfer to the substrate and behaves as an initiator for the reaction.

Organozinc-mediated direct cross-coupling under microwave irradiation

Li, Chun-Jing

, p. 869 - 875 (2021/07/02)

We report a direct cross-coupling reaction between (het)aryl pivalates/tosylates and di(het)arylzinc species in 2-methyltetrahydrofuran/N-methyl pyrrolidone (1:1), which occurs via C–O bond cleavage under microwave irradiation. The reaction takes place smoothly in short reaction times without the addition of any catalyst or ligand. The reaction is suitable for a broad scope of substrates and exhibits good functional group compatibility, utilizes a simple work-up procedure, and gives the desired products in high purity.

Catalytic SNAr Hydroxylation and Alkoxylation of Aryl Fluorides

Kang, Qi-Kai,Li, Ke,Li, Yuntong,Lin, Yunzhi,Shi, Hang,Xu, Lun

supporting information, p. 20391 - 20399 (2021/08/13)

Nucleophilic aromatic substitution (SNAr) is a powerful strategy for incorporating a heteroatom into an aromatic ring by displacement of a leaving group with a nucleophile, but this method is limited to electron-deficient arenes. We have now established a reliable method for accessing phenols and phenyl alkyl ethers via catalytic SNAr reactions. The method is applicable to a broad array of electron-rich and neutral aryl fluorides, which are inert under classical SNAr conditions. Although the mechanism of SNAr reactions involving metal arene complexes is hypothesized to involve a stepwise pathway (addition followed by elimination), experimental data that support this hypothesis is still under exploration. Mechanistic studies and DFT calculations suggest either a stepwise or stepwise-like energy profile. Notably, we isolated a rhodium η5-cyclohexadienyl complex intermediate with an sp3-hybridized carbon bearing both a nucleophile and a leaving group.

Palladium (II)–Salan Complexes as Catalysts for Suzuki–Miyaura C–C Cross-Coupling in Water and Air. Effect of the Various Bridging Units within the Diamine Moieties on the Catalytic Performance

Bunda, Szilvia,Joó, Ferenc,Kathó, ágnes,Udvardy, Antal,Voronova, Krisztina

supporting information, (2020/09/18)

Water-soluble salan ligands were synthesized by hydrogenation and subsequent sulfonation of salens (N,N’-bis(slicylidene)ethylenediamine and analogues) with various bridging units (linkers) connecting the nitrogen atoms. Pd (II) complexes were obtained in reactions of sulfosalans and [PdCl4]2?. Characterization of the ligands and complexes included extensive X-ray diffraction studies, too. The Pd (II) complexes proved highly active catalysts of the Suzuki–Miyaura reaction of aryl halides and arylboronic acid derivatives at 80 ?C in water and air. A comparative study of the Pd (II)–sulfosalan catalysts showed that the catalytic activity largely increased with increasing linker length and with increasing steric congestion around the N donor atoms of the ligands; the highest specific activity was 40,000 (mol substrate) (mol catalyst × h)?1. The substrate scope was explored with the use of the two most active catalysts, containing 1,4-butylene and 1,2-diphenylethylene linkers, respectively.

Arylation of aryllithiums with: S-arylphenothiazinium ions for biaryl synthesis

Morofuji, Tatsuya,Yoshida, Tatsuki,Tsutsumi, Ryosuke,Yamanaka, Masahiro,Kano, Naokazu

, p. 13995 - 13998 (2020/11/21)

Aryllithiums are one of the most common and important aryl nucleophiles; nevertheless, methods for arylation of aryllithums to produce biaryls have been limited. Herein, we report arylation of aryllithiums with S-arylphenothiazinium ions through selective

Modular and Selective Arylation of Aryl Germanes (C?GeEt3) over C?Bpin, C?SiR3 and Halogens Enabled by Light-Activated Gold Catalysis

Dahiya, Amit,Fricke, Christoph,Funes-Ardoiz, Ignacio,Gevondian, Avetik G.,Schoenebeck, Franziska,Sherborne, Grant J.

supporting information, p. 15543 - 15548 (2020/06/22)

Selective C (Formula presented.) –C (Formula presented.) couplings are powerful strategies for the rapid and programmable construction of bi- or multiaryls. To this end, the next frontier of synthetic modularity will likely arise from harnessing the coupling space that is orthogonal to the powerful Pd-catalyzed coupling regime. This report details the realization of this concept and presents the fully selective arylation of aryl germanes (which are inert under Pd0/PdII catalysis) in the presence of the valuable functionalities C?BPin, C?SiMe3, C?I, C?Br, C?Cl, which in turn offer versatile opportunities for diversification. The protocol makes use of visible light activation combined with gold catalysis, which facilitates the selective coupling of C?Ge with aryl diazonium salts. Contrary to previous light-/gold-catalyzed couplings of Ar–N2+, which were specialized in Ar–N2+ scope, we present conditions to efficiently couple electron-rich, electron-poor, heterocyclic and sterically hindered aryl diazonium salts. Our computational data suggest that while electron-poor Ar–N2+ salts are readily activated by gold under blue-light irradiation, there is a competing dissociative deactivation pathway for excited electron-rich Ar–N2+, which requires an alternative photo-redox approach to enable productive couplings.

Copper catalysed Gomberg-Bachmann-Hey reactions of arenediazonium tetrafluoroborates and heteroarenediazonium o-benzenedisulfonimides. Synthetic and mechanistic aspects

Antenucci, Achille,Barbero, Margherita,Dughera, Stefano,Ghigo, Giovanni

, (2020/10/20)

Gomberg-Bachmann-Hey reactions were carried out in the presence of copper as a catalyst and gave rise to biaryls or heterobiaryls in good yields and in mild reaction conditions. A computational study of some key points of the reaction was performed. The results are coherent with the experimental data and confirm some aspects of the mechanism. The reaction free energies for the reduction in benzene by CuI of a set of 40 (hetero)arenediazonium tetrafluoroborates were calculated. Both the experiments and the calculations showed that in the coupling with substituted solvents (toluene, bromobenzene, nitrobenzene and anisole) the binding to the ortho position was always favoured.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 58743-83-2