Welcome to LookChem.com Sign In|Join Free


  • or


Post Buying Request

590-01-2 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

590-01-2 Usage

Chemical Properties

Different sources of media describe the Chemical Properties of 590-01-2 differently. You can refer to the following data:
1. Butyl propionate is a flammable, colorless to straw-yellow liquid with an apple-like odor.
2. Butyl propionate has a characteristic earthy, faintly sweet odor and apricot-like taste.


Reported found in fresh apple, apple juice, melon, strawberry, Gruyere de Comte cheese and plum.


Butyl propionate is a moderately fast evaporating solvent. Its linear structure contributes to effective viscosity reduction and improves solvent diffusion from coating films.Butyl propionate is used solvent for nitrocellulose, retarder in lacquer thinner, ingredient of perfumes, flavors.


By esterification of propionic acid with n-butyl alcohol in the presence of concentrated H2SO4 or p-toluene sulfonic acid.

Aroma threshold values

Detection: 25 to 440 ppb

Synthesis Reference(s)

Tetrahedron Letters, 14, p. 1823, 1973 DOI: 10.1016/S0040-4039(01)96249-5

General Description

A water-white liquid with an apple-like odor. Less dense than water. Flash point 90°F. May irritate skin and eyes. Used to make perfumes and flavorings.

Reactivity Profile

BUTYL PROPIONATE is an ester. Esters react with acids to liberate heat along with alcohols and acids. Strong oxidizing acids may cause a vigorous reaction that is sufficiently exothermic to ignite the reaction products. Heat is also generated by the interaction of esters with caustic solutions. Flammable hydrogen is generated by mixing esters with alkali metals and hydrides.


Skin and eye irritant. Flammable, moderate fire risk.

Flammability and Explosibility


Safety Profile

Mildly toxic by ingestion. A skin irritant. Dangerously flammable when exposed to heat or flame. To fight fire, use foam, CO2, dry chemical. Incompatible with oxidizing materials. See also ESTERS, n-BUTYL ALCOHOL, and PROPIONIC ACID.

Potential Exposure

It is used as a solvent or lacquer thinner; and in perfumes and flavoring


UN1914 Butyl propionates, Hazard Class: 3; Labels: 3—Flammable liquid

Waste Disposal

Dissolve or mix the material with a combustible solvent and burn in a chemical incinerator equipped with an afterburner and scrubber. All federal, state, and local environmental regulations must be observed.

Check Digit Verification of cas no

The CAS Registry Mumber 590-01-2 includes 6 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 3 digits, 5,9 and 0 respectively; the second part has 2 digits, 0 and 1 respectively.
Calculate Digit Verification of CAS Registry Number 590-01:
62 % 10 = 2
So 590-01-2 is a valid CAS Registry Number.

590-01-2 Well-known Company Product Price

  • Brand
  • (Code)Product description
  • CAS number
  • Packaging
  • Price
  • Detail
  • Alfa Aesar

  • (B20125)  n-Butyl propionate, 99%   

  • 590-01-2

  • 100g

  • 197.0CNY

  • Detail
  • Alfa Aesar

  • (B20125)  n-Butyl propionate, 99%   

  • 590-01-2

  • 500g

  • 599.0CNY

  • Detail



According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 12, 2017

Revision Date: Aug 12, 2017


1.1 GHS Product identifier

Product name Butyl propionate

1.2 Other means of identification

Product number -
Other names butyl propanoate

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only. Food additives -> Flavoring Agents
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:590-01-2 SDS

590-01-2Relevant articles and documents

Surface acidity and catalytic activity of aged SO24 /SnO2 catalyst supported with WO3

Alaya, M. Nasouh,Rabah, Marwa A.

, p. 285 - 291 (2013)

New solid acid was prepared by loading of aged 15 wt.% SO24 /SnO2 catalyst with 15 and 35 wt.% WO3. The catalysts were calcined at 400 and 650°C. The surface areas of the catalysts were determined by the data of N2 adsorption at -196°C. The surface acidity was measured potentiometricaly using n-butylamine solution in acetonitrile. The types of acidic sites were determined by FT-IR spectra of adsorbed pyridine. The catalytic activities of the catalysts were tested toward esterification of propionic acid (PA) with nbutanol (B). The SBET values of the ISS were decreased with an increase in the calcination temperature, whereas, the SBET of the loaded catalysts was maximum at 400°C. The results reveal that the used catalysts possess very strong acid sites and contain both Br?nsted and Lewis acidic sites. The acid strength, total surface acidity and the conversion of PA were maxima for 400°C products. The effect of the reaction parameters was also studied, and shows that the PA conversion was increased with an increase in the reaction temperature and the catalyst weight. The reactant molar ratio shows a maximum conversion at PA:B = 1:2. The kinetics study indicates that the catalytic esterification of PA with B obey first order kinetics equation.

Metallacarboranes in Catalysis. 7. Kinetics and Mechanism of Acrylate Ester Hydrogenation Catalyzed by closo-Rhodacarboranes

Behnken, Paul E.,Busby, David C.,Delaney, Mark S.,King III, Roswell E.,Kreimendahl, Charles W.,et. al.

, p. 7444 - 7450 (1984)

In a search for reactions catalyzed by rhodacarborane clusters, the species I, , II, , III, , and IV, , were examined as catalyst precursors in the hydrogenation of 1-butyl acrylate (C) in THF solution at 40.8 deg C.Only catalyst precursors I and III gave results that were free of complications and suitable for detailed kinetic analyses.Both I and III reversibly hydridometalate C to produce the chelated closo adducts VI and VII, respectively, and an equivalent quantity of PPh3.The slow attainment of equilibria in these hydrometalation reactions accounts for the appearance of a lengthy induction period at the outset of C hydrogenations which employed either I or III as catalyst precursor.The rate law for C hydrogenation using I or III was elucidated and found to be identical in form with that previously observed using closo- or exo-nido-rhodacarboranes in 3-metyl-3-phenylbutene-1 (A) hydrogenation.As in the case of A, it was shown by deuterium labeling that C hydrogenation did not involve the hydride ligand at the RhH vertex of either I of III.The BH vertices of these same species were similarly shown to not be involved.Reduction of C with D2 using I as the catalyst source gave a moderate amount of D scrambling into recovered C and produced 1-butyl propionate-d0-d4.The above results led to a proposed catalytic cycle that culminates in the slow, but probably not rate-limiting, elimination of 1-butyl propionate from a reversibly formed exo-nido alkyl hydride intermediate.These kinetic characteristics may have their origin in the weak electron donor properties of the chelated - ligands that are attached to Rh(1+) or Rh(3+) in exo-nido intermediates by a pair of B-H-Rh three-center bonds.

Membrane reactor for acceleration of esterification using a special ionic liquid with reaction and separation and microwave heating

Uragami, Tadashi,Kishimoto, Junji,Miyata, Takashi

, p. 57 - 63,7 (2012)

To improve conversion of n-butanol to the corresponding ester using acetic acid, the ionic liquid 1-allyl-3-butylimidazolium bis(trifluoromethanesulfonyl) imide ([ABIM]TFSI), which does not dissolve in the water by-product, and poly(vinyl alcohol) (PVA) or PVA-TEOS (tetraethoxysilane) hybrid membranes were employed when using evapomeation (EV), along with microwave heating. The effect on the conversion of n-butanol of each individual process variable as well as that of all of the variables used in combination was investigated, and the characteristics of each approach are discussed.

Ambient Hydrogenation and Deuteration of Alkenes Using a Nanostructured Ni-Core–Shell Catalyst

Beller, Matthias,Feng, Lu,Gao, Jie,Jackstell, Ralf,Jagadeesh, Rajenahally V.,Liu, Yuefeng,Ma, Rui

supporting information, p. 18591 - 18598 (2021/06/28)

A general protocol for the selective hydrogenation and deuteration of a variety of alkenes is presented. Key to success for these reactions is the use of a specific nickel-graphitic shell-based core–shell-structured catalyst, which is conveniently prepared by impregnation and subsequent calcination of nickel nitrate on carbon at 450 °C under argon. Applying this nanostructured catalyst, both terminal and internal alkenes, which are of industrial and commercial importance, were selectively hydrogenated and deuterated at ambient conditions (room temperature, using 1 bar hydrogen or 1 bar deuterium), giving access to the corresponding alkanes and deuterium-labeled alkanes in good to excellent yields. The synthetic utility and practicability of this Ni-based hydrogenation protocol is demonstrated by gram-scale reactions as well as efficient catalyst recycling experiments.

Genome mining reveals new bacterial type I Baeyer-Villiger monooxygenases with (bio)synthetic potential

Bianchi, Dario A.,Carabajal, María Ayelén,Ceccoli, Romina D.,Rial, Daniela V.

, (2020/03/19)

Baeyer-Villiger monooxygenases (BVMOs) are oxidorreductases that catalyze the oxidation of ketones in a very selective manner. By genome mining we detected seven putative type I BVMOs in Bradyrhizobium diazoefficiens USDA 110. As we established the phylogenetic relationships among them and with other type I BVMOs, we found out that they belong to different clades of the phylogenetic tree. Thus, we decided to clone and heterologously express five of them. Three of them, each one from a divergent phylogenetic group, were obtained as soluble proteins, allowing us to proceed with their biocatalytic assessment and enzymatic characterization. As to substrate scope and selectivity, we observed a complementary behavior among the three BVMOs. BVMO2 was the more versatile biocatalyst in whole-cell systems while BVMO4 and BVMO5 showed a narrow substrate profile with preference for linear ketones and particular regioselectivity for (±)-cis-bicyclo[3.2.0]hept-2-en-6-one.

Amido PNP complexes of iridium: Synthesis and catalytic olefin and alkyne hydrogenation

Huang, Mei-Hui,Zou, Xue-Ru,Liang, Lan-Chang

, p. 353 - 360 (2019/12/24)

In situ lithiation of HN(o-C6H4PPh2)2 (H[1a]) or HN(o-C6H4PiPr2)2 (H[1b]) with nBuLi in THF at ?35°C followed by addition of [Ir(μ-Cl)(COD)]2 (COD = 1,5-cyclooctadiene) in toluene at ?35°C generates 5-coordinate [1a]Ir(η4-COD) (2a) or 4-coordinate [1b]Ir(η2-COD) (2b), respectively. Oxidative addition of N-H in H[1b] to [Ir(μ-Cl)(COD)]2 affords square pyramidal [1b]Ir(H)(Cl) (3b). Metathetical reaction of 3b with LiBHEt3 in the presence of 1 atm of H2 in toluene produces [1b]Ir(H)2 (4b). Both 2a and 4b are active for catalytic hydrogenation of olefins and alkynes under extremely mild conditions.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)


What can I do for you?
Get Best Price

Get Best Price for 590-01-2