Welcome to LookChem.com Sign In|Join Free

CAS

  • or
(S)-(+)-Benzoin, also known as (S)-benzoin or (S)-(+)-benzoin, is a chiral compound with the chemical formula C14H12O2. It is an enantiomer of (R)-(-)-benzoin, which has the same molecular formula but a different spatial arrangement of atoms. (S)-(+)-Benzoin is a white crystalline solid that is soluble in organic solvents and has a melting point of 135-137°C. It is used as a chiral auxiliary in asymmetric synthesis, a stabilizer in the production of benzoin derivatives, and as a fragrance component in the perfume industry. The compound is synthesized through the condensation of benzaldehyde with itself in the presence of a base, such as sodium hydroxide or potassium hydroxide. Due to its optical activity, (S)-(+)-benzoin exhibits a specific rotation of +61.5°, which is an important characteristic for its identification and application in various chemical processes.

5928-67-6

Post Buying Request

5928-67-6 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

5928-67-6 Usage

Check Digit Verification of cas no

The CAS Registry Mumber 5928-67-6 includes 7 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 4 digits, 5,9,2 and 8 respectively; the second part has 2 digits, 6 and 7 respectively.
Calculate Digit Verification of CAS Registry Number 5928-67:
(6*5)+(5*9)+(4*2)+(3*8)+(2*6)+(1*7)=126
126 % 10 = 6
So 5928-67-6 is a valid CAS Registry Number.
InChI:InChI=1/C14H12O2/c15-13(11-7-3-1-4-8-11)14(16)12-9-5-2-6-10-12/h1-10,13,15H/t13-/m0/s1

5928-67-6 Well-known Company Product Price

  • Brand
  • (Code)Product description
  • CAS number
  • Packaging
  • Price
  • Detail
  • Aldrich

  • (256250)  (S)-(+)-Benzoin  99%

  • 5928-67-6

  • 256250-100MG

  • 3,052.53CNY

  • Detail

5928-67-6SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 14, 2017

Revision Date: Aug 14, 2017

1.Identification

1.1 GHS Product identifier

Product name (2S)-2-hydroxy-1,2-diphenylethanone

1.2 Other means of identification

Product number -
Other names Ethanone, 2-hydroxy-1,2-diphenyl-, (S)-

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:5928-67-6 SDS

5928-67-6Relevant articles and documents

Microbial synthesis of (S)- And (R)-benzoin in enantioselective desymmetrization and deracemization catalyzed by aureobasidium pullulans included in the blossom protect agent

Ko?odziejska, Renata,Studzinska, Renata,Tafelska-Kaczmarek, Agnieszka,Pawluk, Hanna,Mlicka, Dominika,Wozniak, Alina

, (2021/05/07)

In this study, we examined the Aureobasidium pullulans strains DSM 14940 and DSM 14941 included in the Blossom Protect agent to be used in the bioreduction reaction of a symmetrical dicarbonyl compound. Both chiral 2-hydroxy-1,2-diphenylethanone antipodes were obtained with a high enantiomeric purity. Mild conditions (phosphate buffer [pH 7.0, 7.2], 30 ?C) were successfully employed in the synthesis of (S)-benzoin using two different methodologies: benzyl desymmetrization and rac-benzoin deracemization. Bioreduction carried out with higher reagent concentrations, lower pH values and prolonged reaction time, and in the presence of additives, enabled enrichment of the reaction mixture with (R)-benzoin. The described procedure is a potentially useful tool in the synthesis of chiral building blocks with a defined configuration in a simple and economical process with a lower environmental impact, enabling one-pot biotransformation.

Enantioselective Acyloin Rearrangement of Acyclic Aldehydes Catalyzed by Chiral Oxazaborolidinium Ion

Cho, Soo Min,Lee, Si Yeon,Ryu, Do Hyun

supporting information, p. 1516 - 1520 (2021/03/03)

A catalytic enantioselective acyloin rearrangement of acyclic aldehydes to synthesize highly optically active acyloin derivatives is described. In the presence of a chiral oxazaborolidinium ion catalyst, the reaction provided chiral α-hydroxy aryl ketones in high yield (up to 95%) and enantioselectivity (up to 98% ee). In addition, the enantioselective acyloin rearrangement of α,α-dialkyl-α-siloxy aldehydes produced chiral α-siloxy alkyl ketones in high yield (up to 92%) with good enantioselectivity (up to 89% ee).

Enantioselective N-heterocyclic carbene-catalysed intermolecular crossed benzoin condensations: Improved catalyst design and the role of in situ racemisation

Delany, Eoghan G.,Connon, Stephen J.

supporting information, p. 248 - 258 (2021/01/14)

The enantioselective intermolecular crossed-benzoin condensation mediated by novel chiral N-heterocyclic carbenes derived from pyroglutamic acid has been investigated. A small library of chiral triazolium ions were synthesised. Each possessed a tertiary alcohol H-bond donor and a variable N-aryl substituent. It was found that increasing both the steric requirement and the electron-withdrawing characteristics of the N-aryl ring led to more chemoselective, efficient and enantioselective chemistry, however both quenching the reaction at different times and deuterium incorporation experiments involving the product revealed that this is complicated by product racemisation in situ (except in the case of benzoin itself), which explains the dependence of enantioselectivity on the electrophilicity of the reacting aldehydes common in the literature. Subsequent protocol optimisation, where one reacting partner was an o-substituted benzaldehyde, allowed a range of crossed-benzoins to be synthesised in moderate-good yields with moderate to excellent enantioselectivity.

Homochiral Dodecanuclear Lanthanide "cage in Cage" for Enantioselective Separation

Zhu, Chengfeng,Tang, Haitong,Yang, Keke,Fang, Yu,Wang, Kun-Yu,Xiao, Zhifeng,Wu, Xiang,Li, Yougui,Powell, Joshua A.,Zhou, Hong-Cai

supporting information, p. 12560 - 12566 (2021/08/23)

It is extremely difficult to anticipate the structure and the stereochemistry of a complex, particularly when the ligand is flexible and the metal node adopts diverse coordination numbers. When trivalent lanthanides (LnIII) and enantiopure amino acid ligands are utilized as building blocks, self-assembly sometimes yields rare chiral polynuclear structures. In this study, an enantiopure carboxyl-functionalized amino acid-based ligand with C3 symmetry reacts with lanthanum cations to give a homochiral porous coordination cage, (Δ/λ)12-PCC-57. The dodecanuclear lanthanide cage has an unprecedented octahedral "cage-in-cage"framework. During the self-assembly, the chirality is transferred from the enantiopure ligand and fixed by the binuclear lanthanide cluster to give 12 metal centers that have either Δor λ homochiral stereochemistry. The cage exhibits excellent enantioselective separation of racemic alcohols, 2,3-dihydroquinazolinones, and multiple commercially available drugs. This finding exhibits a rare example of a multinuclear lanthanide complex with a dual-walled topology and homochirality. The highly ordered self-assembly and self-sorting of flexible amino acids and lanthanides shed light on the chiral transformation between different complicated artificial systems that mimic natural enzymes.

Structural insights into the desymmetrization of bulky 1,2-dicarbonyls through enzymatic monoreduction

Rabuffetti, Marco,Cannazza, Pietro,Contente, Martina Letizia,Pinto, Andrea,Romano, Diego,Hoyos, Pilar,Alcantara, Andres R.,Eberini, Ivano,Laurenzi, Tommaso,Gourlay, Louise,Di Pisa, Flavio,Molinari, Francesco

supporting information, (2021/01/25)

Benzil reductases are dehydrogenases preferentially active on aromatic 1,2-diketones, but the reasons for this peculiar substrate recognition have not yet been clarified. The benzil reductase (KRED1-Pglu) from the non-conventional yeast Pichia glucozyma showed excellent activity and stereoselectivity in the monoreduction of space-demanding aromatic 1,2-dicarbonyls, making this enzyme attractive as biocatalyst in organic chemistry. Structural insights into the stereoselective monoreduction of 1,2-diketones catalyzed by KRED1-Pglu were investigated starting from its 1.77 ? resolution crystal structure, followed by QM and classical calculations; this study allowed for the identification and characterization of the KRED1-Pglu reactive site. Once identified the recognition elements involved in the stereoselective desymmetrization of bulky 1,2-dicarbonyls mediated by KRED1-Pglu, a mechanism was proposed together with an in silico prediction of substrates reactivity.

Preparation of a novel bridged bis(β-cyclodextrin) chiral stationary phase by thiol-ene click chemistry for enhanced enantioseparation in HPLC

Gong, Bolin,Guo, Siyu,Zhang, Ning

, p. 35754 - 35764 (2021/12/02)

A bridged bis(β-cyclodextrin) ligand was firstly synthesized via a thiol-ene click chemistry reaction between allyl-ureido-β-cyclodextrin and 4-4′-thiobisthiophenol, which was then bonded onto a 5 μm spherical silica gel to obtain a novel bridged bis(β-cyclodextrin) chiral stationary phase (HTCDP). The structures of HTCDP and the bridged bis(β-cyclodextrin) ligand were characterized by the 1H nuclear magnetic resonance (1H NMR), solid state 13C nuclear magnetic resonance (13C NMR) spectra spectrum, scanning electron microscope, elemental analysis, mass spectrometry, infrared spectrometry and thermogravimetric analysis. The performance of HTCDP in enantioseparation was systematically examined by separating 21 chiral compounds, including 8 flavanones, 8 triazole pesticides and 5 other common chiral drugs (benzoin, praziquantel, 1-1′-bi-2-naphthol, Tr?ger's base and bicalutamide) in the reversed-phase chromatographic mode. By optimizing the chromatographic conditions such as formic acid content, mobile phase composition, pH values and column temperature, 19 analytes were completely separated with high resolution (1.50-4.48), in which the enantiomeric resolution of silymarin, 4-hydroxyflavanone, 2-hydroxyflavanone and flavanone were up to 4.34, 4.48, 3.89 and 3.06 within 35 min, respectively. Compared to the native β-CD chiral stationary phase (CDCSP), HTCDP had superior enantiomer separation and chiral recognition abilities. For example, HTCDP completely separated 5 other common chiral drugs, 2 flavanones and 3 triazole pesticides that CDCSP failed to separate. Unlike CDCSP, which has a small cavity (0.65 nm), the two cavities in HTCDP joined by the aryl connector could synergistically accommodate relatively bulky chiral analytes. Thus, HTCDP may have a broader prospect in enantiomeric separation, analysis and detection. This journal is

C3 The symmetry contains a chiral ligand H3L of an amide bond. Preparation method and application

-

Paragraph 0092-0100, (2021/09/08)

The invention discloses C. 3 Chiral ligand H with symmetric amide bond3 L Relates to the technical field of material chemistry and chiral chemistry. The invention further provides the chiral ligand H. 3 L Preparation method and application thereof. The present invention has the advantage that the chiral ligand H of the present invention is a chiral ligand. 3 The L has a higher C. 3 The symmetric and flexible amide group enables coordination of the lanthanide metal ions with high coordination number and high oxygen affinity to be assembled into a novel structure-structure lanthanide metal chiral porous coordination cage. Moreover, the abundant chiral amide groups and amino acid residues on the ligand framework can be directly introduced into the synthesized lanthanide metal chiral porous coordination cage, thereby being beneficial to generating multiple chiral recognition sites and unique chiral microenvironments which mimic the biological enzyme binding pocket and further realize the purpose of high enantioselectivity separation of a series of chiral small molecule compounds.

Catalytic Asymmetric Acyloin Rearrangements of α-Ketols, α-Hydroxy Aldehydes, and α-Iminols by N, N′-Dioxide-Metal Complexes

Dai, Li,Li, Xiangqiang,Zeng, Zi,Dong, Shunxi,Zhou, Yuqiao,Liu, Xiaohua,Feng, Xiaoming

supporting information, p. 5041 - 5045 (2020/07/03)

A highly enantioselective acyloin rearrangement of cyclic α-ketols has been developed with a chiral Al(III)-N,N′-dioxide complex as catalyst. This strategy provided an array of optically active 2-acyl-2-hydroxy cyclohexanones in moderate to good yields with high enantioselectivities. The asymmetric isomerizations of acyclic α-hydroxy aldehydes and α-iminols were achieved as well under modified conditions, affording the corresponding chiral α-hydroxy ketones and α-amino ketones in moderate results. Moreover, further transformations of product to enantioenriched diols were carried out.

Novel chiral stationary phases based on 3,5-dimethyl phenylcarbamoylated β-cyclodextrin combining cinchona alkaloid moiety

Zhu, Lunan,Zhu, Junchen,Sun, Xiaotong,Wu, Yaling,Wang, Huiying,Cheng, Lingping,Shen, Jiawei,Ke, Yanxiong

, p. 1080 - 1090 (2020/05/25)

Novel chiral selectors based on 3,5-dimethyl phenylcarbamoylated β-cyclodextrin connecting quinine (QN) or quinidine (QD) moiety were synthesized and immobilized on silica gel. Their chromatographic performances were investigated by comparing to the 3,5-dimethyl phenylcarbamoylated β-cyclodextrin (β-CD) chiral stationary phase (CSP) and 9-O-(tert-butylcarbamoyl)-QN-based CSP (QN-AX). Fmoc-protected amino acids, chiral drug cloprostenol (which has been successfully employed in veterinary medicine), and neutral chiral analytes were evaluated on CSPs, and the results showed that the novel CSPs characterized as both enantioseparation capabilities of CD-based CSP and QN/QD-based CSPs have broader application range than β-CD-based CSP or QN/QD-based CSPs. It was found that QN/QD moieties play a dominant role in the overall enantioseparation process of Fmoc-amino acids accompanied by the synergistic effect of β-CD moiety, which lead to the different enantioseparation of β-CD-QN-based CSP and β-CD-QD-based CSP. Furthermore, new CSPs retain extraordinary enantioseparation of cyclodextrin-based CSP for some neutral analytes on normal phase and even exhibit better enantioseparation than the corresponding β-CD-based CSP for certain samples.

Asymmetric aerobic oxidation of secondary alcohols catalyzed by poly(: N-vinyl-2-pyrrolidone)-stabilized gold clusters modified with cyclodextrin derivatives

Hirano, Koto,Takano, Shinjiro,Tsukuda, Tatsuya

supporting information, p. 15033 - 15036 (2020/01/03)

Surface modification of poly(N-vinyl-2-pyrrolidone)-stabilized gold clusters (1.8 ± 0.6 nm) with aminated cyclodextrins induced aerobic oxidative kinetic resolution of racemic secondary alcohols (krel = 1.2).

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 5928-67-6