610-67-3Relevant articles and documents
Mustard Carbonate Analogues as Sustainable Reagents for the Aminoalkylation of Phenols
Annatelli, Mattia,Trapasso, Giacomo,Salaris, Claudio,Salata, Cristiano,Castellano, Sabrina,Aricò, Fabio
supporting information, p. 3459 - 3464 (2021/05/24)
N,N-dialkyl ethylamine moiety can be found in numerous scaffolds of macromolecules, catalysts, and especially pharmaceuticals. Common synthetic procedures for its incorporation in a substrate relies on the use of a nitrogen mustard gas or on multistep syntheses featuring chlorine hazardous/toxic chemistry. Reported herein is a one-pot synthetic approach for the easy introduction of aminoalkyl chain into different phenolic substrates through dialkyl carbonate (β-aminocarbonate) chemistry. This new direct alcohol substitution avoids the use of chlorine chemistry, and it is efficient on numerous pharmacophore scaffolds with good to quantitative yield. The cytotoxicity via MTT of the β-aminocarbonate, key intermediate of this synthetic approach, was also evaluated and compared with its alcohol precursor.
Aryl Ether Syntheses via Aromatic Substitution Proceeding under Mild Conditions
Ando, Shin,Tsuzaki, Marina,Ishizuka, Tadao
, p. 11181 - 11189 (2020/10/12)
In this study, mild conditions for aromatic substitutions during the syntheses of aryl ethers were developed. In the reaction conditions, the choices of solvent, base, and the sequence for the addition of the reagents proved important. A wide variety of alcohols were used directly as nucleophiles and smoothly reacted with aryl chlorides that possessed either a nitro or a cyano group at either the ortho- or para-position. Controlled experiments we performed suggested that the reaction underwent a charge-transfer process mediated by a combination of DMF and tert-BuOK.
Ipso-Nitrosation of arylboronic acids with chlorotrimethylsilane and sodium nitrite
Prakash, G.K. Surya,Gurung, Laxman,Schmid, Philipp Christoph,Wang, Fang,Thomas, Tisa Elizabeth,Panja, Chiradeep,Mathew, Thomas,Olah, George A.
, p. 1975 - 1978 (2014/04/03)
Nitroso compounds are versatile reagents in synthetic organic chemistry. Herein, we disclose a feasible protocol for the ipso-nitrosation of aryl boronic acids using chlorotrimethylsilane-sodium nitrite unison as nitrosation reagent system.