Welcome to LookChem.com Sign In|Join Free

CAS

  • or

61330-62-9

Post Buying Request

61330-62-9 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier
  • China Biggest Factory Manufacturer Supply Methyl 2,3,4,6-Tetra-O-benzyl-a-D-mannopyranoside CAS 61330-62-9

    Cas No: 61330-62-9

  • USD $ 1.0-2.0 / Kilogram

  • 1 Kilogram

  • 200 Metric Ton/Month

  • Leader Biochemical Group
  • Contact Supplier

61330-62-9 Usage

Chemical Properties

Yellow Oil

Uses

Methyl 2,3,4,6-Tetra-O-benzyl-α-D-mannopyranoside (cas# 61330-62-9) is a compound useful in organic synthesis.

Check Digit Verification of cas no

The CAS Registry Mumber 61330-62-9 includes 8 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 5 digits, 6,1,3,3 and 0 respectively; the second part has 2 digits, 6 and 2 respectively.
Calculate Digit Verification of CAS Registry Number 61330-62:
(7*6)+(6*1)+(5*3)+(4*3)+(3*0)+(2*6)+(1*2)=89
89 % 10 = 9
So 61330-62-9 is a valid CAS Registry Number.
InChI:InChI=1/C35H38O6/c1-36-35-34(40-25-30-20-12-5-13-21-30)33(39-24-29-18-10-4-11-19-29)32(38-23-28-16-8-3-9-17-28)31(41-35)26-37-22-27-14-6-2-7-15-27/h2-21,31-35H,22-26H2,1H3/t31?,32-,33+,34-,35+/m1/s1

61330-62-9SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 18, 2017

Revision Date: Aug 18, 2017

1.Identification

1.1 GHS Product identifier

Product name Methyl 2,3,4,6-tetra-O-benzyl-a-D-mannopyranoside

1.2 Other means of identification

Product number -
Other names Methyl 2,3,4,6-Tetra-O-benzyl-|A-D-glucopyranoside

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:61330-62-9 SDS

61330-62-9Relevant articles and documents

Discovery of Salidroside-Derivated Glycoside Analogues as Novel Angiogenesis Agents to Treat Diabetic Hind Limb Ischemia

Liu, Caiping,Han, Jingxuan,Marcelina, Olivia,Nugrahaningrum, Dyah Ari,Huang, Song,Zou, Meijuan,Wang, Guixue,Miyagishi, Makoto,He, Yun,Wu, Shourong,Kasim, Vivi

supporting information, p. 135 - 162 (2022/01/14)

Therapeutic angiogenesis is a potential therapeutic strategy for hind limb ischemia (HLI); however, currently, there are no small-molecule drugs capable of inducing it at the clinical level. Activating the hypoxia-inducible factor-1 (HIF-1) pathway in skeletal muscle induces the secretion of angiogenic factors and thus is an attractive therapeutic angiogenesis strategy. Using salidroside, a natural glycosidic compound as a lead, we performed a structure-activity relationship (SAR) study for developing a more effective and druggable angiogenesis agent. We found a novel glycoside scaffold compound (C-30) with better efficacy than salidroside in enhancing the accumulation of the HIF-1α protein and stimulating the paracrine functions of skeletal muscle cells. This in turn significantly increased the angiogenic potential of vascular endothelial and smooth muscle cells and, subsequently, induced the formation of mature, functional blood vessels in diabetic and nondiabetic HLI mice. Together, this study offers a novel, promising small-molecule-based therapeutic strategy for treating HLI.

Tuning the activity of iminosugars: novel N-alkylated deoxynojirimycin derivatives as strong BuChE inhibitors

Ahuja-Casarín, Ana I.,Merino-Montiel, Penélope,Vega-Baez, José Luis,Montiel-Smith, Sara,Fernandes, Miguel X.,Lagunes, Irene,Maya, Inés,Padrón, José M.,López, óscar,Fernández-Bola?os, José G.

, p. 138 - 146 (2020/11/27)

We have designed unprecedented cholinesterase inhibitors based on 1-deoxynojirimycin as potential anti-Alzheimer’s agents. Compounds are comprised of three key structural motifs: the iminosugar, for interaction with cholinesterase catalytic anionic site (

Automated Quantification of Hydroxyl Reactivities: Prediction of Glycosylation Reactions

Chang, Chun-Wei,Lin, Mei-Huei,Chan, Chieh-Kai,Su, Kuan-Yu,Wu, Chia-Hui,Lo, Wei-Chih,Lam, Sarah,Cheng, Yu-Ting,Liao, Pin-Hsuan,Wong, Chi-Huey,Wang, Cheng-Chung

supporting information, p. 12413 - 12423 (2021/05/03)

The stereoselectivity and yield in glycosylation reactions are paramount but unpredictable. We have developed a database of acceptor nucleophilic constants (Aka) to quantify the nucleophilicity of hydroxyl groups in glycosylation influenced by the steric, electronic and structural effects, providing a connection between experiments and computer algorithms. The subtle reactivity differences among the hydroxyl groups on various carbohydrate molecules can be defined by Aka, which is easily accessible by a simple and convenient automation system to assure high reproducibility and accuracy. A diverse range of glycosylation donors and acceptors with well-defined reactivity and promoters were organized and processed by the designed software program “GlycoComputer” for prediction of glycosylation reactions without involving sophisticated computational processing. The importance of Aka was further verified by random forest algorithm, and the applicability was tested by the synthesis of a Lewis A skeleton to show that the stereoselectivity and yield can be accurately estimated.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 61330-62-9