Welcome to LookChem.com Sign In|Join Free

CAS

  • or

619-01-2

Post Buying Request

619-01-2 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

619-01-2 Usage

Chemical Properties

Dihydrocarveol has a spearmint-like odor.

Occurrence

Reported found (free or esterified) in the essential oils Mentha longifolia, Mentha verticillata, Artemisia juncea, caraway (Mentha virdis var. sativa) cultivated in Calabria, spearmint oil and spearmint scotch oil. Also reported found in black tea, dill herb, celery leaf and stalk, caraway seed and rosemary.

Preparation

By reducing carvone and separating the resulting isomers

Definition

ChEBI: A p-menthane monoterpenoid that is the dihydro derivative of carveol.

Taste threshold values

Taste characteristics at 15 ppm: green mint with sweet weedy spicy nuances

Safety Profile

A moderate skin and eye irritant. A combustible liquid. When heated to decomposition it emits acrid smoke and irritating fumes.

Check Digit Verification of cas no

The CAS Registry Mumber 619-01-2 includes 6 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 3 digits, 6,1 and 9 respectively; the second part has 2 digits, 0 and 1 respectively.
Calculate Digit Verification of CAS Registry Number 619-01:
(5*6)+(4*1)+(3*9)+(2*0)+(1*1)=62
62 % 10 = 2
So 619-01-2 is a valid CAS Registry Number.
InChI:InChI=1S/C10H18O/c1-7(2)9-5-4-8(3)10(11)6-9/h8-11H,1,4-6H2,2-3H3

619-01-2SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 15, 2017

Revision Date: Aug 15, 2017

1.Identification

1.1 GHS Product identifier

Product name dihydrocarveol

1.2 Other means of identification

Product number -
Other names D-DIHYDROCARVONE

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only. Food additives -> Flavoring Agents
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:619-01-2 SDS

619-01-2Relevant articles and documents

Efficient Transfer Hydrogenation of Ketones using Methanol as Liquid Organic Hydrogen Carrier

Garg, Nidhi,Paira, Soumen,Sundararaju, Basker

, p. 3472 - 3476 (2020/05/29)

Herein, we demonstrate an efficient protocol for transfer hydrogenation of ketones using methanol as practical and useful liquid organic hydrogen carrier (LOHC) under Ir(III) catalysis. Various ketones, including electron-rich/electron-poor aromatic ketones, heteroaromatic and aliphatic ketones, have been efficiently reduced into their corresponding alcohols. Chemoselective reduction of ketones was established in the presence of various other reducible functional groups under mild conditions.

From Bugs to Bioplastics: Total (+)-Dihydrocarvide Biosynthesis by Engineered Escherichia coli

Ascue Avalos, Gabriel A.,Toogood, Helen S.,Tait, Shirley,Messiha, Hanan L.,Scrutton, Nigel S.

, p. 785 - 792 (2019/01/29)

The monoterpenoid lactone derivative (+)-dihydrocarvide ((+)-DHCD) can be polymerised to form shape-memory polymers. Synthetic biology routes from simple, inexpensive carbon sources are an attractive, alternative route over chemical synthesis from (R)-carvone. We have demonstrated a proof-of-principle in vivo approach for the complete biosynthesis of (+)-DHCD from glucose in Escherichia coli (6.6 mg L?1). The pathway is based on the Mentha spicata route to (R)-carvone, with the addition of an ′ene′-reductase and Baeyer–Villiger cyclohexanone monooxygenase. Co-expression with a limonene synthesis pathway enzyme enables complete biocatalytic production within one microbial chassis. (+)-DHCD was successfully produced by screening multiple homologues of the pathway genes, combined with expression optimisation by selective promoter and/or ribosomal binding-site screening. This study demonstrates the potential application of synthetic biology approaches in the development of truly sustainable and renewable bioplastic monomers.

Oxy-functionalization of olefins with neat and heterogenized binuclear V(IV)O and Fe(II)complexes: Effect of steric hindrance on product selectivity and output in homogeneous and heterogeneous phase

Parmar, Digvijaysinh K.,Butani, Pinal M.,Thumar, Niraj J.,Jasani, Pinal M.,Padaliya, Ravi V.,Sandhiya, Paba R.,Nakum, Haresh D.,Khan, Md. Nasim,Makwana, Dipak

, (2019/06/05)

Neat {[VO(sal2bz)]2; [Fe(sal2bz)(H2O)2]2·2H2O} and zeolite-Y immobilized {[VO(sal2bz)]2-Y; [Fe(sal2bz)(H2O)2]2-Y} binuclear complexes have been prepared and characterized by spectroscopic techniques (IR, UV–vis), elemental analyses (CHN, ICP-OES), thermal study (TGA), scanning electron micrograph (SEM), adsorption study (BET)and X-ray diffraction (XRD)patterns. Neat (homogeneous)and immobilized (heterogeneous)complexes were employed as catalysts in the oxidation of olefins, namely, cyclohexene, limonene and α-pinene in the presence of 30% hydrogen peroxide. 100% conversion of cyclohexene and α-pinene was obtained while limonene was oxidized up to 90%. Homogeneous catalysts showed highly selective result as neat [VO(sal2bz)]2 complex has provided 87% cyclohexane-1,2-diol and neat [Fe(sal2bz)(H2O)2]2·2H2O complex has provided 79% verbenone in oxidation of cyclohexene and α-pinene, respectively. We have observed that due to steric hindrance, formation of olefinic oxidation products increases on moving from α-pinene to limonene and limonene to cyclohexene. Additionally. recovered heterogeneous catalysts showed intact results up to two consecutive runs. Probable catalytic mechanism has been proposed for oxidation of cyclohexene.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 619-01-2