62338-23-2Relevant articles and documents
Nanoporous Na+-montmorillonite perchloric acid as an efficient and recyclable catalyst for the chemoselective protection of hydroxyl groups
Mashhadinezhad, Maryam,Shirini, Farhad,Mamaghani, Manouchehr
, p. 2099 - 2107 (2019/01/03)
Nanoporous Na+-montmorillonite perchloric acid as a novel heterogeneous reusable solid acid catalyst was easily prepared by treatment of Na+-montmorillonite as a cheap and commercially available support with perchloric acid. The catalyst was characterized using a variety of techniques including X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), thermogravimetric analysis (TGA), energy dispersive X-ray spectroscopy (EDX), pH analysis and determination of the Hammett acidity function. The prepared reagent showed excellent catalytic activity for the chemoselective conversion of alcohols and phenols to their corresponding trimethylsilyl ethers with 1,1,1,3,3,3-hexamethyldisilazane (HMDS) at room temperature. Deprotection of the resulting trimethylsilyl ethers can also be carried out using the same catalyst in ethanol. All reactions were performed under mild and completely heterogeneous reaction conditions in good to excellent yields. The notable advantages of this protocol are: short reaction times, high yields, availability and low cost of the reagent, easy work-up procedure and the reusability of the catalyst during a simple filtration.
General, Auxiliary-Enabled Photoinduced Pd-Catalyzed Remote Desaturation of Aliphatic Alcohols
Parasram, Marvin,Chuentragool, Padon,Wang, Yang,Shi, Yi,Gevorgyan, Vladimir
, p. 14857 - 14860 (2017/10/31)
A general, efficient, and site-selective visible light-induced Pd-catalyzed remote desaturation of aliphatic alcohols into valuable allylic, homoallylic, and bis-homoallylic alcohols has been developed. This transformation operates via a hybrid Pd-radical mechanism, which synergistically combines the favorable features of radical approaches, such as a facile remote C-H HAT step, with that of transition-metal-catalyzed chemistry (selective β-hydrogen elimination step). This allows achieving superior degrees of regioselectivity and yields in the desaturation of alcohols compared to those obtained by the state-of-the-art desaturation methods. The HAT at unactivated C(sp3)-H sites is enabled by the easily installable/removable Si-auxiliaries. Formation of the key hybrid alkyl Pd-radical intermediates is efficiently induced by visible light from alkyl iodides and Pd(0) complexes. Notably, this method requires no exogenous photosensitizers or external oxidants.
Phase-Transfer Catalyzed O-Silyl Ether Deprotection Mediated by a Cyclopropenium Cation
Mir, Roya,Dudding, Travis
, p. 709 - 714 (2017/04/26)
The use of a cyclopropenium cation as a phase-transfer catalyst for O-silyl ether deprotection is reported. Mechanistic insight into this deprotection methodology derived by linear free-energy relationships (LFER), quantum theory of atoms in molecules (QTAIM), and density functional theory (DFT) calculations are also provided.
Introduction of PEG-SANM nanocomposite as a new and highly efficient reagent for the promotion of the silylation of alcohols and phenols and deprotection of the silyl ethers
Shirini, Farhad,Shojaei, Abdollah Fallah,Heirati, Seyedeh Zahra Dalil
, p. 944 - 951 (2016/07/06)
Poly (ethylene glycol)-sulfonated sodium montmorillonite (PEG-SANM) nanocomposite was prepared by a simple method and characterized using XRD, TGA, SEM, TEM, and FT-IR techniques. After preparation and characterization, this reagent was used as a highly efficient and reusable solid acid catalyst for the chemoselective silylation of alcohols and phenols and deprotection of the obtained silyl ethers. Themethod offers several advantages including high to excellent yields of the products, short reaction times, easy preparation of the catalyst and easy work-up procedure. In addition, the catalyst can be recycled and reused at least for five times without significant decrease in the catalytic activity.
Rice husk: Introduction of a green, cheap and reusable catalyst for the protection of alcohols, phenols, amines and thiols
Shirini, Farhad,Akbari-Dadamahaleh, Somayeh,Mohammad-Khah, Ali,Aliakbar, Ali-Reza
, p. 164 - 170 (2014/03/21)
A mild, efficient and eco-friendly protocol for the chemoselective protection of benzylic and primary and less hindered secondary aliphatic alcohols and phenols as trimethylsilyl ethers and different types of amines as N-tert-butylcarbamates is developed using rice husk (RiH) as the catalyst. This reagent is also able to catalyze the acetylation of alcohols, phenols, thiols and amines with acetic anhydride. Easy work-up, relatively short reaction times, excellent yields and low cost, availability and reusability of the catalyst are the striking features of this methodology, which can be considered to be one of the best and general methods for the protection of alcohols, phenols, thiols and amines. In addition, the use of a green reagent in the above-mentioned reactions results in a reduction of environmental pollution and of the cost of the applied methods.
Preparation of nano silica supported sodium hydrogen sulfate: As an efficient catalyst for the trimethyl, triethyl and t-butyldimethyl silylations of aliphatic and aromatic alcohols in solution and under solvent-free conditions
Abri, Abdolreza,Ranjdar, Somayeh
, p. 929 - 934 (2014/10/16)
Nano silica supported sodium hydrogen sulfate has been prepared by mixing NaHSO4 with activated Nano silicagel. We wish to report a new method for the synthesis of trimethyl (TMS), triethyl (TES) and t-butyldimethyl silyl (TBS) ethers from benzylic, allylic, propargylic alcohols, phenols, naphtholes and some of phenolic drugs in the solution and under solvent-free conditions.
Rice husk ash: A new, cheap, efficient, and reusable reagent for the protection of alcohols, phenols, amines, and thiols
Shirini,Akbari-Dadamahaleh, Somayeh,Mohammad-Khah, Ali
, p. 577 - 586 (2014/06/09)
Amild, efficient, and eco-friendly protocol for the protection of alcohols and phenols as trimethylsilyl ethers has been developed using rice husk ash as a reagent. This reagent is also able to catalyze the acetylation of alcohols, phenols, thiols, and amines with acetic anhydride. All reactions were performed under mild conditions in good to high yields. Copyright
Highly atom economical uncatalysed and I2-catalysed silylation of phenols, alcohols and carbohydrates, using HMDS under solvent-free reaction conditions (SFRC)
Jereb, Marjan
experimental part, p. 3861 - 3867 (2012/06/30)
An uncatalysed silylation of phenols, regardless on the aggregate state and nature of the substituents with 0.55 equiv of HMDS under solvent-free reaction conditions (SFRC) at room temperature is reported. Sterically hindered phenols, carbohydrates and most of the alcohols additionally required a catalytic amount (up to 2 mol %) of iodine. The reaction protocol is very simple; obtaining a pure product, particularly of uncatalysed reactions, was frequently a completely solvent-free process.
Alum: An efficient catalyst for trimethylsilylation of alcohols and phenols with hexamethyldisilazane
Yang, Xiaojuan,Liang, Jinying
experimental part, p. 228 - 230 (2012/08/07)
A highly convenient method for the trimethylsilylation of alcohols and phenols via treatment by hexamethyldisilazane in the presence of alum as a catalyst has been developed. A wide variety of hydroxyl groups were selectively protected in CH3CN under mild conditions.
Preparation, characterization and use of 1,3-disulfonic acid imidazolium hydrogen sulfate as an efficient, halogen-free and reusable ionic liquid catalyst for the trimethylsilyl protection of hydroxyl groups and deprotection of the obtained trimethylsilanes
Shirini, Farhad,Khaligh, Nader Ghaffari,Akbari-Dadamahaleh, Somayeh
, p. 15 - 23 (2013/01/14)
Novel 1,3-disulfonic acid imidazolium hydrogen sulfate, a halogen-free ionic liquid, is a recyclable and eco-benign catalyst for the trimethylsilyl protection of hydroxyl groups at room temperature under solvent free conditions to afford trimethylsilanes in excellent yields (92-100%) and in very short reaction times (1-5 min). Deprotection of the resulting trimethylsilanes can also be achieved using the same catalyst in methanol. The catalyst was characterized by IR, 1H NMR, 13C NMR and MS studies. All the products were extensively characterized by IR, 1H NMR, MS, and elemental and melting point analyses. This new method consistently has the advantages of excellent yields and short reaction times. Further, the catalyst can be recovered and reused for several times without loss of activity. The work-up of the reaction consists of a simple separation, followed by concentration of the crude product and purification.