Welcome to LookChem.com Sign In|Join Free

CAS

  • or

644-32-6

Post Buying Request

644-32-6 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

644-32-6 Usage

Purification Methods

About 300mL of solvent is blown off from a filtered solution of dibenzoyl disulfide (25g) in acetone (350mL). The remaining acetone is decanted from the solid which is recrystallised first from 300mL of 1:1 (v/v) EtOH/ethyl acetate, then from 300mL of EtOH, and finally from 240mL of 1:1 (v/v) EtOH/ethyl acetate. The yield is about 40% [Pryor & Pickering J Am Chem Soc 84 2705 1962]. [Beilstein 9 H 424, 9 II 289, 9 III 1977.] Handle in a fume cupboard because of TOXICITY and obnoxious odour.

Check Digit Verification of cas no

The CAS Registry Mumber 644-32-6 includes 6 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 3 digits, 6,4 and 4 respectively; the second part has 2 digits, 3 and 2 respectively.
Calculate Digit Verification of CAS Registry Number 644-32:
(5*6)+(4*4)+(3*4)+(2*3)+(1*2)=66
66 % 10 = 6
So 644-32-6 is a valid CAS Registry Number.
InChI:InChI=1/C14H10O2S2/c15-13(11-7-3-1-4-8-11)17-18-14(16)12-9-5-2-6-10-12/h1-10H

644-32-6SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 16, 2017

Revision Date: Aug 16, 2017

1.Identification

1.1 GHS Product identifier

Product name S-benzoylsulfanyl benzenecarbothioate

1.2 Other means of identification

Product number -
Other names dibenzoyl-disulfane

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:644-32-6 SDS

644-32-6Relevant articles and documents

Bloch

, p. 1342 (1937)

Moness,Lott,Christiansen

, p. 397,401 (1936)

-

Westlake,Dougherty

, p. 1861 (1945)

-

Transformation of Thioacids into Carboxylic Acids via a Visible-Light-Promoted Atomic Substitution Process

Fu, Qiang,Liang, Fu-Shun,Lou, Da-Wei,Pan, Gao-Feng,Wang, Rui,Wu, Min,Xie, Kai-Jun

supporting information, p. 2020 - 2024 (2022/03/31)

A visible-light-promoted atomic substitution reaction for transforming thiocacids into carboxylic acids with dimethyl sulfoxide (DMSO) as the oxygen source has been developed, affording various alkyl and aryl carboxylic acids in over 90% yields. The atomic substitution process proceeds smoothly through the photochemical reactivity of the formed hydrogen-bonding adduct between thioacids and DMSO. A DMSO-involved proton-coupled electron transfer (PCET) and the simultaneous generation of thiyl and hydroxyl radicals are proposed to be key steps for realizing the transformation.

Amide Synthesis from Thiocarboxylic Acids and Amines by Spontaneous Reaction and Electrosynthesis

Tang, Li,Matuska, Jack H.,Huang, Yu-Han,He, Yan-Hong,Guan, Zhi

, p. 2570 - 2575 (2019/06/13)

Amide bond formation is one of the most important basic reactions in chemistry. A catalyst-free approach for constructing amide bonds from thiocarboxylic acids and amines was developed. The mechanistic studies showed that the disulfide was the key intermediate for this amide synthesis. Thiobenzoic acids could be automatically oxidized to disulfides in air, thioaliphatic acids could be electro-oxidized to disulfides, and the resulting disulfides reacted with amines to give the corresponding amides. By this method, various amides could be easily synthesized in excellent yields without using any catalyst or activator. The successful synthesis of bioactive compounds also highlights the synthetic utility of this strategy in medicinal chemistry.

Visible light driven amide synthesis in water at room temperature from Thioacid and amine using CdS nanoparticles as heterogeneous Photocatalyst

Das, Sudipto,Ray, Shounak,Ghosh, Abhisek Brata,Samanta, Partha Kumar,Samanta, Suvendu,Adhikary, Bibhutosh,Biswas, Papu

, (2017/12/28)

Highly efficient photocatalytic thioacid mediated amide synthesis at room temperature using CdS nanoparticles as photocatalyst was observed under a household 30?W CFL in water. The operationally mild reaction was tolerant to a number of functional group substitutions on amine and could be scaled up to gram. This heterogeneous photocatalyst was extremely stable and could easily be recovered by simple centrifugation for at least six recycling reactions without any significant loss of catalytic performance. The possible reaction mechanism for the photocatalytic thioacid mediated amide synthesis over the CdS semiconductor has also been proposed on the basis of experimental observations.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 644-32-6