6738-23-4Relevant articles and documents
Preparation method of nitrogen-alkyl (deuterated alkyl) aromatic heterocycle and alkyl (deuterated alkyl) aryl ether compound
-
Paragraph 0093-0098, (2021/04/03)
The invention provides a method for preparing nitrogen-alkyl(deuterated alkyl)aromatic heterocycle and alkyl(deuterated alkyl)aryl ether compounds. The method adopted in the invention specifically comprises the following steps: firstly, adding an alkoxy base (MOR') or a combination reagent Q (comprising a base M'X, an alcohol C and a molecular sieve E) into a solvent B to be stirred; then, addingan aromatic compound D of nitrogen sulfonyl or oxygen sulfonyl into a mixture; separating and purifying after reaction to obtain nitrogen-alkyl(deuterated alkyl)aromatic heterocycle or alkyl(deuterated alkyl)aryl ether. The method can realize one-step conversion from an electron withdrawing benzenesulfonyl protecting group on a nitrogen or oxygen atom to an electron donating alkyl protecting group, avoids using highly toxic alkyl halide, and has advantages of being efficient, economical, environmentally friendly, mild in condition, good in substrate universality and high in yield; the prepareddeuterated compounds can be widely applied to the fields of pharmaceutical chemistry and organic chemistry synthesis.
[OONN] tetradentate fourth subgroup metal complexes as well as preparation method and application thereof
-
Paragraph 0032-0035, (2021/05/12)
The invention relates to the technical field of olefin polymerization catalysts, and particularly discloses [OONN] tetradentate fourth subgroup metal complexes, a preparation method and application. The [OONN] tetradentate fourth subgroup metal complexes have a structure which is shown in the specification. The [OONN] tetradentate fourth subgroup metal complexes provided by the invention can catalyze ethylene polymerization and ethylene and alpha-olefin copolymerization, and in the polymerization process, the heat resistance is good, and the polymerization time is long. The complexes are simple in synthesis method, easy to prepare and high in yield, the structure is convenient to modify, the complexes can be used for catalyzing ethylene polymerization and ethylene and alpha-olefin copolymerization after being activated by a proper cocatalyst, the problems that an existing olefin polymerization catalyst is relatively tedious in preparation process, high in cost and low in catalytic activity are solved, and the complexes have good industrial application value and wide application field.
Synthesis and in vitro activities on anti-platelet aggregation of 4-methoxy-1,3-phthalamidesamides and benzenedisulfonamides
Chen, Guangling,Wang, Chaoqing,Zhang, Zhihao,Liu, Xiujie
, p. 1413 - 1424 (2019/06/20)
Cardiovascular diseases are the most frequent cause of morbidity and mortality worldwide. In order to discover novel compounds with anti-platelet aggregation activities, a series of novel 4-methoxy-1,3-phthalamidesamides (1a–1i) and a series of novel 4-methoxy-1,3-benzenedisulfon-amides (2a–2i) were synthesized and their anti-platelet aggregation activities were evaluated by the turbidimetric method in response to the following agonists: adenosine diphosphate (ADP), arachidonic acid (AA), and Collagen. Those compounds that have better in vitro activities were subjected to cell toxicity tests via cell counting kit-8 (CCK-8) assay. The inhibition rates of anti-platelet in vitro of five compounds 1g (39.45%), 2d (38.87%), 2g (38.55%), 2h (44.56%), and 2i (43.93%) were higher than that of two reference drugs picotamide (36.12%) and aspirin (38.45%) when ADP was selected as an inducer. The inhibition rates of seven compounds 1c (43.63%), 1d (40.02%), 1g (47.42%), 1i (40.45%), 2c (40.11%), 2d (40.45%), and 2i (49.05%) were higher than that of picotamide (34.89%) and aspirin (39.43%) when AA was selected as inducer. And the inhibition rates of five compounds 1d (47.22%), 1i (45.01%), 2d (38.74%), 2e (42.21%), and 2f (39.94%) were higher than picotamide (38.45%) and aspirin (37.08%) when collagen was selected as inducer. Moreover, the effect of cell toxicity exhibited that none of the compounds had obvious cell toxicity against L-929 cells. Therefore, 4-methoxy-1,3-phthalamidesamides (1a–1i) and 4-methoxy-1,3-benzenedisulfon-amides (2a–2i) have the potential to become a novel kind of anti-platelet drugs and deserve further study.