Welcome to LookChem.com Sign In|Join Free

CAS

  • or
2-METHYLBENZANILIDE is a chemical with a specific purpose. Lookchem provides you with multiple data and supplier information of this chemical.

7055-03-0 Suppliers

Post Buying Request

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier
  • 7055-03-0 Structure
  • Basic information

    1. Product Name: 2-METHYLBENZANILIDE
    2. Synonyms: O-METHYL BENZANILIDE;O-TOLUANILIDE;2-methylbenzoanilide;2-methylbenzoicacidanilide;2-methyl-n-phenyl-benzamid;2-methyl-n-phenylbenzamide;bas305;bas-3050
    3. CAS NO:7055-03-0
    4. Molecular Formula: C14H13NO
    5. Molecular Weight: 211.26
    6. EINECS: 230-334-4
    7. Product Categories: Aromatic Carboxylic Acids, Amides, Anilides, Anhydrides & Salts
    8. Mol File: 7055-03-0.mol
  • Chemical Properties

    1. Melting Point: 125°C
    2. Boiling Point: 350.95°C (rough estimate)
    3. Flash Point: 162.2oC
    4. Appearance: /
    5. Density: 1.0694 (rough estimate)
    6. Vapor Pressure: 0.00483mmHg at 25°C
    7. Refractive Index: 1.5780 (estimate)
    8. Storage Temp.: N/A
    9. Solubility: N/A
    10. PKA: 13.53±0.70(Predicted)
    11. CAS DataBase Reference: 2-METHYLBENZANILIDE(CAS DataBase Reference)
    12. NIST Chemistry Reference: 2-METHYLBENZANILIDE(7055-03-0)
    13. EPA Substance Registry System: 2-METHYLBENZANILIDE(7055-03-0)
  • Safety Data

    1. Hazard Codes: N/A
    2. Statements: N/A
    3. Safety Statements: N/A
    4. WGK Germany:
    5. RTECS:
    6. HazardClass: N/A
    7. PackingGroup: N/A
    8. Hazardous Substances Data: 7055-03-0(Hazardous Substances Data)

7055-03-0 Usage

Uses

o-Toluanilide is a systemic fungicide used in pesticide formulations.

Check Digit Verification of cas no

The CAS Registry Mumber 7055-03-0 includes 7 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 4 digits, 7,0,5 and 5 respectively; the second part has 2 digits, 0 and 3 respectively.
Calculate Digit Verification of CAS Registry Number 7055-03:
(6*7)+(5*0)+(4*5)+(3*5)+(2*0)+(1*3)=80
80 % 10 = 0
So 7055-03-0 is a valid CAS Registry Number.
InChI:InChI=1/C14H13NO/c1-11-7-5-6-10-13(11)14(16)15-12-8-3-2-4-9-12/h2-10H,1H3,(H,15,16)

7055-03-0SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 18, 2017

Revision Date: Aug 18, 2017

1.Identification

1.1 GHS Product identifier

Product name mebenil

1.2 Other means of identification

Product number -
Other names Benzanilide,2-methyl

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:7055-03-0 SDS

7055-03-0Relevant articles and documents

Practical one-pot amidation of N -Alloc-, N -Boc-, and N -Cbz protected amines under mild conditions

Hong, Wan Pyo,Tran, Van Hieu,Kim, Hee-Kwon

, p. 15890 - 15895 (2021/05/19)

A facile one-pot synthesis of amides from N-Alloc-, N-Boc-, and N-Cbz-protected amines has been described. The reactions involve the use of isocyanate intermediates, which are generated in situ in the presence of 2-chloropyridine and trifluoromethanesulfonyl anhydride, to react with Grignard reagents to produce the corresponding amides. Using this reaction protocol, a variety of N-Alloc-, N-Boc-, and N-Cbz-protected aliphatic amines and aryl amines were efficiently converted to amides with high yields. This method is highly effective for the synthesis of amides and offers a promising approach for facile amidation.

Metal-free transamidation of benzoylpyrrolidin-2-one and amines under aqueous conditions

Joseph, Devaneyan,Lee, Sunwoo,Park, Myeong Seong

supporting information, p. 6227 - 6232 (2021/07/28)

N-Acyl lactam amides, such as benzoylpyrrolidin-2-one, benzoylpiperidin-2-one, and benzoylazepan-2-one reacted with amines in the presence of DTBP and TBAI to afford the transamidated products in good yields. The reactions were conducted under aqueous conditions and good functional group tolerance was achieved. Both aliphatic and aromatic primary amines displayed good activity under metal-free conditions. A radical reaction pathway is proposed.

Iron-catalyzed oxidative amidation of acylhydrazines with amines

Wang, Yi-Jie,Zhang, Guo-Yu,Shoberu, Adedamola,Zou, Jian-Ping

, (2021/08/18)

A new approach for amide bond formation via a mild and efficient Iron-catalyzed cross-coupling reaction of acylhydrazines and amines using TBHP as oxidant is described. This protocol is compatible with a wide range of amines and acylhydrazines. In addition, the synthetic application of the reaction is presented.

Regioselective Synthesis of 2° Amides Using Visible-Light-Induced Photoredox-Catalyzed Nonaqueous Oxidative C-N Cleavage of N, N-Dibenzylanilines

Neerathilingam, Nalladhambi,Bhargava Reddy, Mandapati,Anandhan, Ramasamy

supporting information, p. 15117 - 15127 (2021/10/25)

A visible-light-driven photoredox-catalyzed nonaqueous oxidative C-N cleavage of N,N-dibenzylanilines to 2° amides is reported. Further, we have applied this protocol on 2-(dibenzylamino)benzamide to afford quinazolinones with (NH4)2S2O8 as an additive. Mechanistic studies imply that the reaction might undergo in situ generation of α-amino radical to imine by C-N bond cleavage followed by the addition of superoxide ion to form amides.

Nickel-Catalyzed Reductive Cross-Coupling of N-Acyl and N-Sulfonyl Benzotriazoles with Diverse Nitro Compounds: Rapid Access to Amides and Sulfonamides

Bai, Jin,Li, Shangzhang,Li, Wanfang,Qu, Erdong,Zheng, Yan

supporting information, (2021/12/27)

Herein we report a Ni-catalyzed reductive transamidation of conveniently available N-acyl benzotriazoles with alkyl, alkenyl, and aryl nitro compounds, which afforded various amides with good yields and a broad substrate scope. The same catalytic reaction conditions were also applicable for N-sulfonyl benzotriazoles, which could undergo smooth reductive coupling with nitroarenes and nitroalkanes to afford the corresponding sulfonamides.

Cobalt-Catalyzed Deoxygenative Hydroboration of Nitro Compounds and Applications to One-Pot Synthesis of Aldimines and Amides

Gudun, Kristina A.,Hayrapetyan, Davit,Khalimon, Andrey Y.,Segizbayev, Medet,Slamova, Ainur,Zakarina, Raikhan

, (2021/11/30)

The commercially available and bench-stable Co(acac)2 ligated with bis[(2-diphenylphosphino)phenyl] ether (dpephos) was employed for selective room temperature hydroboration of nitro compounds with HBPin (TOF up to 4615 h?1), tolerating halide, hydroxy, amino, ether, ester, lactone, amide and heteroaromatic functionalities. These reactions offered a direct access to a variety of N-borylamines RN(H)BPin, which were in situ treated with aldehydes and carboxylic acids to produce a series of aldimines and secondary carboxamides without the need for dehydrating and/or coupling reagents. Combination of these transformations in a sequential one-pot manner allowed for direct and selective synthesis of aldimines and secondary carboxamides from readily available and inexpensive nitro compounds.

Fe-mediated synthesis of: N -aryl amides from nitroarenes and acyl chlorides

Wu, Yundong,Guo, Lei,Liu, Yuxuan,Xiang, Jiannan,Jiang, Jun

, p. 15290 - 15295 (2021/05/19)

Amides are prevalent in nature and valuable functional compounds in agrochemical, pharmaceutical, and materials industries. In this work, we developed a selective and mild method for the synthesis of N-aryl amides. Starting from commercially available nitroarenes and acyl halides, N-aryl amides with good yields can be obtained in water. Especially in the process of transformation, Fe dust is the only reductant and additive, and the reaction can be easily performed on a large scale.

A practical and sustainable protocol for direct amidation of unactivated esters under transition-metal-free and solvent-free conditions

Chen, Cheng,Cheng, Hua,Du, Min-Chen,Qian, Liang,Qin, Xin,Sang, Wei,Yao, Wei-Zhong,Yuan, Ye,Zhang, Rui

supporting information, p. 3972 - 3982 (2021/06/17)

In this paper, a NaOtBu-mediated synthesis approach was developed for direct amidation of unactivated esters with amines under transition-metal-free and solvent-free conditions, affording a series of amides in good to excellent yields at room temperature. In particular, an environmentally friendly and practical workup procedure, which circumvents the use of organic solvents and chromatography in most cases, was disclosed. Moreover, the gram-scale production of representative products3a,3wand3auwas efficiently realized by applying operationally simple, sustainable and practical procedures. Furthermore, this approach was also applicable to the synthesis of valuable molecules such as moclobemide (a powerful antidepressant), benodanil and fenfuram (two commercial agricultural fungicides). These results demonstrate that this protocol has the potential to streamline amide synthesis in industry. Meanwhile, quantitative green metrics of all the target products were evaluated, implying that the present protocol is advantageous over the reported ones in terms of environmental friendliness and sustainability. Finally, additional experiments and computational calculations were carried out to elucidate the mechanistic insight of this transformation, and one plausible mechanism was provided on the basis of these results and the related literature reports.

Palladium(II) Complexes of a Neutral CCC-Tris(N-heterocyclic carbene) Pincer Ligand: Synthesis and Catalytic Applications

Angeles-Beltrán, Deyanira,Mendoza-Espinosa, Daniel,Rendón-Nava, David,Rheingold, Arnold L.

supporting information, p. 2166 - 2177 (2021/07/20)

Treatment of tris-azolium precursor 1 with palladium acetate under thermal conditions provided a CCC-pincer palladium(II) complex (2) bearing three NHCs (one imidazolylidene and two triazolylidenes) and one iodide ligand. Further treatment of complex 2 with an excess of AgSbF6 generates tris(carbene) dicationic palladium complex 3 in which the iodine ligands are exchanged with SbF6 anions and the metal center is stabilized by one acetonitrile ligand. Complexes 2 and 3 were tested in several cross coupling reactions showing high conversions under low catalyst loadings and mild reaction conditions. Additionally, complexes 2 and 3 performed well in the hydrosilylation of terminal alkynes with good selectivity toward the E-isomer.

Copper-catalyzed Goldberg-type C-N coupling in deep eutectic solvents (DESs) and water under aerobic conditions

Cicco, Luciana,Hernández-Fernández, Jose A.,Salomone, Antonio,Vitale, Paola,Ramos-Martín, Marina,González-Sabín, Javier,Presa Soto, Alejandro,Perna, Filippo M.,Capriati, Vito,García-álvarez, Joaquín

supporting information, p. 1773 - 1779 (2021/03/14)

An efficient and selectiveN-functionalization of amides is first reportedviaa CuI-catalyzed Goldberg-type C-N coupling reaction between aryl iodides and primary/secondary amides run either in Deep Eutectic Solvents (DESs) or water as sustainable reaction media, under mild and bench-type reaction conditions (absence of protecting atmosphere). Higher activities were observed in an aqueous medium, though the employment of DESs expanded and improved the scope of the reaction to include also aliphatic amides. Additional valuable features of the reported protocol include: (i) the possibility to scale up the reaction without any erosion of the yield/reaction time; (ii) the recyclability of both the catalyst and the eutectic solvent up to 4 consecutive runs; and (iii) the feasibility of the proposed catalytic system for the synthesis of biologically active molecules.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 7055-03-0