91-73-6Relevant articles and documents
Discriminating non-ylidic carbon-sulfur bond cleavages of sulfonium ylides for alkylation and arylation reactions
Fang, Jing,Li, Ting,Ma, Xiang,Sun, Jiuchang,Cai, Lei,Chen, Qi,Liao, Zhiwen,Meng, Lingkui,Zeng, Jing,Wan, Qian
, p. 288 - 292 (2021/07/25)
A sulfonium ylide participated alkylation and arylation under transition-metal free conditions is described. The disparate reaction pattern allowed the separate activation of non-ylidic S-alkyl and S-aryl bond. Under acidic conditions, sulfonium ylides serve as alkyl cation precursors which facilitate the alkylations. While under alkaline conditions, cleavage of non-ylidic S-aryl bond produces O-arylated compounds efficiently. The robustness of the protocols were established by the excellent compatibility of wide variety of substrates including carbohydrates.
Regioselective Synthesis of 2° Amides Using Visible-Light-Induced Photoredox-Catalyzed Nonaqueous Oxidative C-N Cleavage of N, N-Dibenzylanilines
Neerathilingam, Nalladhambi,Bhargava Reddy, Mandapati,Anandhan, Ramasamy
supporting information, p. 15117 - 15127 (2021/10/25)
A visible-light-driven photoredox-catalyzed nonaqueous oxidative C-N cleavage of N,N-dibenzylanilines to 2° amides is reported. Further, we have applied this protocol on 2-(dibenzylamino)benzamide to afford quinazolinones with (NH4)2S2O8 as an additive. Mechanistic studies imply that the reaction might undergo in situ generation of α-amino radical to imine by C-N bond cleavage followed by the addition of superoxide ion to form amides.
Synthesis ofN-aryl amines enabled by photocatalytic dehydrogenation
Kim, Jungwon,Kim, Siin,Choi, Geunho,Lee, Geun Seok,Kim, Donghyeok,Choi, Jungkweon,Ihee, Hyotcherl,Hong, Soon Hyeok
, p. 1915 - 1923 (2021/02/22)
Catalytic dehydrogenation (CD)viavisible-light photoredox catalysis provides an efficient route for the synthesis of aromatic compounds. However, access toN-aryl amines, which are widely utilized synthetic moieties,viavisible-light-induced CD remains a significant challenge, because of the difficulty in controlling the reactivity of amines under photocatalytic conditions. Here, the visible-light-induced photocatalytic synthesis ofN-aryl amines was achieved by the CD of allylic amines. The unusual strategy using C6F5I as an hydrogen-atom acceptor enables the mild and controlled CD of amines bearing various functional groups and activated C-H bonds, suppressing side-reaction of the reactiveN-aryl amine products. Thorough mechanistic studies suggest the involvement of single-electron and hydrogen-atom transfers in a well-defined order to provide a synergistic effect in the control of the reactivity. Notably, the back-electron transfer process prevents the desired product from further reacting under oxidative conditions.