Welcome to LookChem.com Sign In|Join Free

CAS

  • or

947-84-2

Post Buying Request

947-84-2 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

947-84-2 Usage

Chemical Properties

2-Biphenylcarboxylic acid is White powder

Uses

Different sources of media describe the Uses of 947-84-2 differently. You can refer to the following data:
1. 2-Biphenylcarboxylic acid is used in the preparation of neuropeptide FF receptor antagonists. In addition it is used in the synthesis of disubstituted piperidines as orexin receptor antagonists.
2. It is used as a pharmaceutical intermediate. he reaction of 2?-substituted biphenyl-2-carboxylic acids (where the 2?-substituent is H, CO2H, NO2, Cl, OMe, or CO2Me) with lead tetra-acetate in refluxing benzene solution, under a nitrogen atmosphere, affords 3,4-benzocoumarin as a major organic product.

Purification Methods

Crystallise the acid from *C6H6/pet ether or aqueous EtOH. [Beilstein 9 IV 2472.]

Check Digit Verification of cas no

The CAS Registry Mumber 947-84-2 includes 6 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 3 digits, 9,4 and 7 respectively; the second part has 2 digits, 8 and 4 respectively.
Calculate Digit Verification of CAS Registry Number 947-84:
(5*9)+(4*4)+(3*7)+(2*8)+(1*4)=102
102 % 10 = 2
So 947-84-2 is a valid CAS Registry Number.
InChI:InChI=1/C13H10O2/c14-13(15)12-9-5-4-8-11(12)10-6-2-1-3-7-10/h1-9H,(H,14,15)/p-1

947-84-2 Well-known Company Product Price

  • Brand
  • (Code)Product description
  • CAS number
  • Packaging
  • Price
  • Detail
  • Alfa Aesar

  • (A12049)  Biphenyl-2-carboxylic acid, 98%   

  • 947-84-2

  • 5g

  • 210.0CNY

  • Detail
  • Alfa Aesar

  • (A12049)  Biphenyl-2-carboxylic acid, 98%   

  • 947-84-2

  • 25g

  • 679.0CNY

  • Detail
  • Alfa Aesar

  • (A12049)  Biphenyl-2-carboxylic acid, 98%   

  • 947-84-2

  • 100g

  • 2164.0CNY

  • Detail

947-84-2SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 12, 2017

Revision Date: Aug 12, 2017

1.Identification

1.1 GHS Product identifier

Product name 2-Biphenylcarboxylic acid

1.2 Other means of identification

Product number -
Other names 2-PHENYLBENZOIC ACID

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:947-84-2 SDS

947-84-2Relevant articles and documents

Silica-coated magnetic nanoparticles functionalized cobalt complex: a recyclable and efficient catalyst for the C?C bond formation

Haqjow, Hanif,Raoufi, Farveh

, p. 4113 - 4128 (2021/07/26)

In this study, the Co-based catalyst was prepared by cobalt immobilization on the surface of functionalized silica-coated magnetic NPs (Fe3O4@SiO2-CT-Co) as a magnetically core–shell nanocatalyst and characterized by FT-IR, TGA, XRD, VSM, SEM, TEM, EDX, EDX mapping, and ICP techniques and appraised in the Suzuki–Miyaura cross-coupling reaction under mild reaction conditions. The results displayed the superparamagnetic behavior of the Fe3O4 NPs core encapsulated by SiO2 shell, and the size of the particles was estimated about 30?nm. Compared with the previously reported catalysts, the engineered Fe3O4@SiO2-CT-Co catalyst provided perfect catalytic performance for the Suzuki–Miyaura cross-coupling reaction in water as a green solvent and it was much cheaper in the comparison with the traditional Pd-based catalysts. Importantly, the durability of magnetic nanocatalyst was studied and observed that it is stable under the reaction conditions and could be easily reused for at least six successive cycles without any significant decrease in its catalytic activity. Graphic abstract: [Figure not available: see fulltext.]

Magnetization of graphene oxide nanosheets using nickel magnetic nanoparticles as a novel support for the fabrication of copper as a practical, selective, and reusable nanocatalyst in C-C and C-O coupling reactions

Hajjami, Maryam,Moradi, Parisa

, p. 25867 - 25879 (2021/08/09)

Catalyst species are an important class of materials in chemistry, industry, medicine, and biotechnology. Moreover, waste recycling is an important process in green chemistry and is economically efficient. Herein, magnetic graphene oxide was synthesized using nickel magnetic nanoparticles and further applied as a novel support for the fabrication of a copper catalyst. The catalytic activity of supported copper on magnetic graphene oxide (Cu-ninhydrin@GO-Ni MNPs) was investigated as a selective, practical, and reusable nanocatalyst in the synthesis of diaryl ethers and biphenyls. Some of the obtained products were identified by NMR spectroscopy. This nanocatalyst has been characterized by atomic absorption spectroscopy (AAS), scanning electron microscopy (SEM), wavelength dispersive X-ray spectroscopy (WDX), energy-dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FT-IR), and vibrating sample magnetometer (VSM) techniques. The results obtained from SEM shown that this catalyst has a nanosheet structure. Also, XRD and FT-IR analysis show that the structure of graphene oxide and nickel magnetic nanoparticles is stable during the modification of the nanoparticles and synthesis of the catalyst. The VSM curve of the catalyst shows that this catalyst can be recovered using an external magnet; therefore, it can be reused several times without a significant loss of its catalytic efficiency. The heterogeneity and stability of this nanocatalyst during organic reactions was confirmed by the hot filtration test and AAS technique.

Assemblies of 1,4-Bis(diarylamino)naphthalenes and Aromatic Amphiphiles: Highly Reducing Photoredox Catalysis in Water

Abe, Manabu,Akita, Munetaka,Chitose, Youhei,Hyodo, Yuki,Koike, Takashi,Takahashi, Keigo,Yoshizawa, Michito

, (2021/10/21)

Host-guest assemblies of a designed 1,4-bis(diarylamino)naphthalene and V-shaped aromatic amphiphiles consisting of two pentamethylbenzene moieties bridged by an m -phenylene unit bearing two hydrophilic side chains emerged as highly reducing photoredox catalysis systems in water. An efficient demethoxylative hydrogen transfer of Weinreb amides has been developed. The present supramolecular strategy permits facile tuning of visible-light photoredox catalysis in water.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 947-84-2