947-84-2Relevant articles and documents
Silica-coated magnetic nanoparticles functionalized cobalt complex: a recyclable and efficient catalyst for the C?C bond formation
Haqjow, Hanif,Raoufi, Farveh
, p. 4113 - 4128 (2021/07/26)
In this study, the Co-based catalyst was prepared by cobalt immobilization on the surface of functionalized silica-coated magnetic NPs (Fe3O4@SiO2-CT-Co) as a magnetically core–shell nanocatalyst and characterized by FT-IR, TGA, XRD, VSM, SEM, TEM, EDX, EDX mapping, and ICP techniques and appraised in the Suzuki–Miyaura cross-coupling reaction under mild reaction conditions. The results displayed the superparamagnetic behavior of the Fe3O4 NPs core encapsulated by SiO2 shell, and the size of the particles was estimated about 30?nm. Compared with the previously reported catalysts, the engineered Fe3O4@SiO2-CT-Co catalyst provided perfect catalytic performance for the Suzuki–Miyaura cross-coupling reaction in water as a green solvent and it was much cheaper in the comparison with the traditional Pd-based catalysts. Importantly, the durability of magnetic nanocatalyst was studied and observed that it is stable under the reaction conditions and could be easily reused for at least six successive cycles without any significant decrease in its catalytic activity. Graphic abstract: [Figure not available: see fulltext.]
Microflowers formed by complexation-driven self-assembly between palladium(ii) and bis-theophyllines: Immortal catalyst for C-C cross-coupling reactions
Jin, Ren-Hua,Jou, Naoki,Kaikake, Katsuya,Shitara, Go
, p. 35311 - 35320 (2021/11/30)
The Pd catalyst for Suzuki-Miyaura or the other C-C coupling reactions is one of the central tools in organic synthesis related to medicine, agricultural chemicals and advanced materials. However, recycling palladium is a bottleneck for developing the extreme potential of Pd in chemistry. Herein, we established a new heterogeneous Pd catalytic system in which the catalyst is a nanopetal-gathered flower-like microsphere self-assembled from PdCl2 and alkyl-linked bis-theophyllines. The microflowers catalyzed quantitatively the reaction of aryl bromides and phenylboronic acid in aqueous media at room temperature. It was found that the reaction proceeds better in an air atmosphere than in nitrogen gas even though the Pd(ii) species employed was lowered to 0.001 mol% in the substance. Very interestingly, the microflowers could be recycled 20 times without deactivation in the C-C coupling reaction between bromobenzene and phenylboronic acid in the presence of sodium chloride. We found that the sodium chloride added played an important role in maintaining the morphology of microflowers and preventing the formation of metallic Pd particles.
Preparation method of acrylamido
-
Paragraph 0118; 0129-0134, (2022/01/04)
The present invention relates to a method for preparing a pyrimidine, 9-fluorenone as raw material, by open loop, acid chloride, amidation, chlorination, Hofmann (Hofmann) rearrangement degradation to give 2-(4'-chlorophenyl) aniline, and then condensed with 2-chloronicotinamide to give the product acetoimide, the present invention also relates accordingly to the intermediates 4'-chloro-2-bibenzamide and 4'-chloro-2-aminobiphenyl preparation method. The method of the present invention can obtain the target product with high yield, high purity, and can reduce costs while reducing environmental harm.
Assemblies of 1,4-Bis(diarylamino)naphthalenes and Aromatic Amphiphiles: Highly Reducing Photoredox Catalysis in Water
Abe, Manabu,Akita, Munetaka,Chitose, Youhei,Hyodo, Yuki,Koike, Takashi,Takahashi, Keigo,Yoshizawa, Michito
, (2021/10/21)
Host-guest assemblies of a designed 1,4-bis(diarylamino)naphthalene and V-shaped aromatic amphiphiles consisting of two pentamethylbenzene moieties bridged by an m -phenylene unit bearing two hydrophilic side chains emerged as highly reducing photoredox catalysis systems in water. An efficient demethoxylative hydrogen transfer of Weinreb amides has been developed. The present supramolecular strategy permits facile tuning of visible-light photoredox catalysis in water.
Mechanochemical-Cascaded C-N Cross-Coupling and Halogenation Using N-Bromo- And N-Chlorosuccinimide as Bifunctional Reagents
Bera, Shyamal Kanti,Mal, Prasenjit
, p. 14144 - 14159 (2021/09/13)
Exploration of alternative energy sources for chemical transformations has gained significant interest from chemists, and mechanochemistry is one of those sources. Herein, we report the use of N-bromosuccinimides (NBS) and N-chlorosuccinimides (NCS) as bifunctional reagents for a cascaded C-N bond formation and subsequent halogenation reactions. Under the solvent-free mechanochemical (ball-milling) conditions, the synthesis of a wide range of phenanthridinone derivatives from N-methoxy-[1,1′-biphenyl]-2-carboxamides is accomplished. During the reactions, NBS and NCS first assisted the oxidative C-N coupling reaction and subsequently promoted a halogenation reaction. Thus, the role of NBS and NCS was established to be bifunctional. Overall, a mild, solvent-free, convenient, one-pot, and direct synthesis of various bromo- and chloro-substituted phenanthridinone derivatives was achieved.
Oxidation of Primary Alcohols and Aldehydes to Carboxylic Acids via Hydrogen Atom Transfer
Tan, Wen-Yun,Lu, Yi,Zhao, Jing-Feng,Chen, Wen,Zhang, Hongbin
supporting information, p. 6648 - 6653 (2021/09/08)
The oxidation of primary alcohols and aldehydes to the corresponding carboxylic acids is a fundamental reaction in organic synthesis. In this paper, we report a new chemoselective process for the oxidation of primary alcohols and aldehydes. This metal-free reaction features a new oxidant, an easy to handle procedure, high isolated yields, and good to excellent functional group tolerance even in the presence of vulnerable secondary alcohols and tert-butanesulfinamides.
Magnetization of graphene oxide nanosheets using nickel magnetic nanoparticles as a novel support for the fabrication of copper as a practical, selective, and reusable nanocatalyst in C-C and C-O coupling reactions
Hajjami, Maryam,Moradi, Parisa
, p. 25867 - 25879 (2021/08/09)
Catalyst species are an important class of materials in chemistry, industry, medicine, and biotechnology. Moreover, waste recycling is an important process in green chemistry and is economically efficient. Herein, magnetic graphene oxide was synthesized using nickel magnetic nanoparticles and further applied as a novel support for the fabrication of a copper catalyst. The catalytic activity of supported copper on magnetic graphene oxide (Cu-ninhydrin@GO-Ni MNPs) was investigated as a selective, practical, and reusable nanocatalyst in the synthesis of diaryl ethers and biphenyls. Some of the obtained products were identified by NMR spectroscopy. This nanocatalyst has been characterized by atomic absorption spectroscopy (AAS), scanning electron microscopy (SEM), wavelength dispersive X-ray spectroscopy (WDX), energy-dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FT-IR), and vibrating sample magnetometer (VSM) techniques. The results obtained from SEM shown that this catalyst has a nanosheet structure. Also, XRD and FT-IR analysis show that the structure of graphene oxide and nickel magnetic nanoparticles is stable during the modification of the nanoparticles and synthesis of the catalyst. The VSM curve of the catalyst shows that this catalyst can be recovered using an external magnet; therefore, it can be reused several times without a significant loss of its catalytic efficiency. The heterogeneity and stability of this nanocatalyst during organic reactions was confirmed by the hot filtration test and AAS technique.
Palladium(II) complexes comprising naphthylamine and biphenylamine based Schiff base ligands: Synthesis, structure and catalytic activity in Suzuki coupling reactions
Balasubramani, Kasturi,Kaleeswaran, Dhananjayan,Nagalakshmi, Veerasamy,Premkumar, Muniyappan,Sathya, Munusamy,Venkatachalam, Galmari
, (2020/03/18)
New palladium(II) Schiff base complexes of the general formula [Pd(L1?6)2] [L1 = N-(Naphthyl)-salicylaldimine (1), L2 = N-(Naphthyl)-methoxysalicylaldimine (2), L3 = N-(Biphenyl)-salicylaldimine (3), L4 = N-(Biphenyl)-methoxysalicylaldimine (4), L5 = N-(Naphthyl)-2-hydroxy-1-naphthaldimine (5), L6 = N-(Biphenyl)-2-hydroxy-1-naphthaldimine (6)] 1–6 have been synthesized by the reaction of [Pd(OAc)2] with bidentate Schiff base ligands. The palladium(II) complexes were fully characterized by analytical, spectral (FT?IR, UV–Vis, 1H NMR & 13C NMR) methods. The molecular structure of the one of the complexes [Pd(L1)2] (6) was confirmed by single crystal X?ray diffraction methods. Further, the new palladium(II) complexes were tested as catalyst for Suzuki-Miyaura coupling reactions and exhibits very good catalytic activity.
Synthesis method of boscalid intermediate 2-(4 '-chlorphenyl) aniline
-
Paragraph 0048-0054, (2020/09/23)
The invention discloses a synthesis method of boscalid intermediate 2-(4 '-chlorphenyl) aniline, and belongs to the technical field of pesticide intermediate synthesis. The 2-(4 '-chlorphenyl) anilineis prepared by taking 9-fluorenone as an initial raw material through ring opening, chlorination, acylating chlorination, ammonification and Hofmann degradation reaction. The preparation method avoids the use of an expensive metal catalyst, the initial raw material is cheap and easy to obtain, and the method has the characteristics of simple reaction operation and high yield, and has higher valuein industrial production.
A self-assembling NHC-PD-loaded calixarene as a potent catalyst for the Suzuki-Miyaura cross-coupling reaction in water
Abdellah, Ibrahim,Couvreur, Patrick,Desma?le, Didier,Huc, Vincent,Martini, Cyril,Mougin, Julie,Pecnard, Shannon,Peramo, Arnaud
, (2020/04/10)
Nanoformulated calix[8]arenes functionalized with N-heterocyclic carbene (NHC)palladium complexes were found to be efficient nano-reactors for Suzuki-Miyaura cross-coupling reactions of water soluble iodo- and bromoaryl compounds with cyclic triol arylborates at low temperature in water without any organic co-solvent. Combined with an improved one-step synthesis of triol arylborates from boronic acid, this remarkably efficient new tool provided a variety of 40-arylated phenylalanines and tyrosines in good yields at low catalyst loading with a wide functional group tolerance.