Welcome to LookChem.com Sign In|Join Free

CAS

  • or
(2R,3R)-3-PHENYLGLYCIDOL is a chemical with a specific purpose. Lookchem provides you with multiple data and supplier information of this chemical.

98819-68-2

Post Buying Request

98819-68-2 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier
  • (2R,3R)-3-(3,4-BIS-BENZYLOXY-PHENYL)-2,3-DIHYDROXY-PROPIONICACIDMETHYLESTER

    Cas No: 98819-68-2

  • USD $ 1.9-2.9 / Gram

  • 100 Gram

  • 1000 Metric Ton/Month

  • Chemlyte Solutions
  • Contact Supplier

98819-68-2 Usage

Check Digit Verification of cas no

The CAS Registry Mumber 98819-68-2 includes 8 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 5 digits, 9,8,8,1 and 9 respectively; the second part has 2 digits, 6 and 8 respectively.
Calculate Digit Verification of CAS Registry Number 98819-68:
(7*9)+(6*8)+(5*8)+(4*1)+(3*9)+(2*6)+(1*8)=202
202 % 10 = 2
So 98819-68-2 is a valid CAS Registry Number.
InChI:InChI=1/C9H10O2/c10-6-8-9(11-8)7-4-2-1-3-5-7/h1-5,8-10H,6H2/t8-,9-/m1/s1

98819-68-2SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 12, 2017

Revision Date: Aug 12, 2017

1.Identification

1.1 GHS Product identifier

Product name [(2R,3R)-3-phenyloxiran-2-yl]methanol

1.2 Other means of identification

Product number -
Other names (2R,3R)-trans-3-phenyloxirane-2-methanol

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:98819-68-2 SDS

98819-68-2Relevant articles and documents

First Stereoselective Synthesis of (6R,7R,8S)-8-Chlorogoniodiol

Sharada, Ambati,Rao, Kundeti Lakshmi Srinivasa,Yadav, Jhillu Singh,Rao, Tadikamalla Prabhakar,Nagaiah, Kommu

, p. 2483 - 2487 (2017)

A stereoselective synthesis of (6R,7R,8S)-8-chlorogoniodiol has been achieved in a linear sequence of 12 steps and 19.8% overall yield from cinnamyl alcohol. The key steps include Sharpless asymmetric epoxidation, regioselective ring opening of epoxide, indium-mediated Barbier allylation, and Still-Gennari olefination.

Intermolecular Amine Transfer to Enantioenriched trans-3Phenylglycidates by an α/β-Aminomutase to Access Both anti-Phenylserine Isomers

Shee, Prakash K.,Yan, Honggao,Walker, Kevin D.

, p. 15071 - 15082 (2020/12/21)

β-Hydroxy-α-amino acids are noncanonical amino acids with two stereocenters and with useful applications in the pharmaceutical and agrochemical sectors. Here, a 5-methylidene-3,5-dihydro-4H-imidazol-4-one-dependent aminomutase from Taxus canadensis (TcPAM) was repurposed to transfer the amino group irreversibly from (2S)-styryl-α-alanine to exogenously supplied trans-3-phenylglycidate enantiomers, producing anti-phenylserines stereoselectively. TcPAM catalysis inverted the intrinsic regioselective chemistry from amination at Cβ to Cα of enantioenriched trans-3-phenylglycidates to make phenylserine predominantly (97%)phenylisoserine (~3% relative abundance). Gas chromatography?mass spectrometry analysis of the chiral auxiliary derivatives of the biocatalyzed products confirmed that the amine transfer was stereoselective for each glycidate enantiomer. TcPAM converted (2S,3R)-3-phenylglycidate to (2S)-anti-phenylserine predominantly (89%) and (2R,3S)-3-phenylglycidate to (2R)-anti-phenylserine (88%)their antipodes, with inversion of the configuration at Cα in each case. Both glycidate enantiomers formed a small amount (~10%) of syn-phenylserine by retaining the configuration at Cα. The minor syn-isomer likely came from a β-hydroxy oxiranone intermediate formed by intramolecular ring opening of the oxirane ring by the carboxylate before amine transfer. TcPAM had a slight preference toward (2S,3R)-3-phenylglycidate, which was turned(kcat = 0.3 min?1) 1.5 times faster than the (2R,3S)-glycidate (kcat = 0.2 min?1). The catalytic efficiencies (kcatapp/KMapp ≈ 20 M?1s?1) of TcPAM for the antipodes were similar. The kinetic data supported a two-substrate ping-pong mechanism for the amination of the phenylglycidates, with competitive inhibition at higher glycidate substrate concentrations.

Three- and two-site heteropolyoxotungstate anions as catalysts for the epoxidation of allylic alcohols by H2O2 under biphasic conditions: Reactivity and kinetic studies of the [Ni3(OH2)3(B-PW9O34){WO5(H2O)}]7?, [Co3(OH2)6(A-PW9O34)2]12?, and [M4(OH2)2(B-PW9O34)2]10? anions, where M?=?Mn(II), Co(II), Ni(II), Cu(II) and Zn(II)

Abram, Paulus Hengky,Burns, Robert C.,Li, Lichun

, (2019/10/19)

The trimetallic phosphopolyoxotungstate anions [Ni3(OH2)3(B-PW9O34){WO5(H2O)}]7? and [Co3(OH2)6(A-PW9O34)2]12? have been studied as epoxidation catalysts for oxygen transfer from 30% H2O2 to a range of allylic alcohols under biphasic conditions (1,2-dichloroethane/H2O) at 15 °C. The reaction mechanism involves coordination of an allylic alcohol at an M(II) site in each case, prior to transfer of a peroxy oxygen from an adjacent W(O2) site. The latter is formed from a terminal W = O unit by reaction with H2O2. Evidence of W(O2) formation was obtained through IR studies. The W(O2) group forms the epoxide by transfer of an oxygen atom to the C[dbnd]C bond of the coordinated allylic alcohol. Kinetic studies using 3-methyl-2-buten-1-ol as the allylic alcohol substrate have been modelled with all three metal sites catalytically active. The reaction involves an autocatalysis mechanism involving an induction period, which can be rationalised by proposing not only coordination of the allylic alcohol to M(II), but also the product hydroxy epoxide, both through their –OH groups. The autocatalysis is generated by formation of the W(O2) group adjacent to a coordinated hydroxy epoxide, which competes with coordination of allylic alcohol. The mechanism requires some twenty-one steps involving just the generic steps listed above, with all three metal sites catalytically active. Temperature-dependent kinetic studies and subsequent Eyring analyses have shown that the Co(II)-containing catalyst is the most active of the two. Analogous studies of the epoxidation of 3-methyl-2-buten-1-ol by the two-site [M4(OH2)2(B-PW9O34)2]10? ions as catalysts, where M = Mn(II), Co(II), Ni(II), Cu(II) and Zn(II), at 15 °C gave an order of reactivity of Cu(II) > Ni(II) > Zn(II), Co(II), Mn(II), which mostly mimics the natural order of stability constants (the Irving-Williams series), suggesting that the formation of the allylic alcohol complexes play a dominant role in this series of related complex anions, with greater replacement of water by allylic alcohol leading to greater reactivity.

Enantiocomplementary Epoxidation Reactions Catalyzed by an Engineered Cofactor-Independent Non-natural Peroxygenase

Crotti, Michele,Kataja, Kim M.,Poelarends, Gerrit J.,Saravanan, Thangavelu,Xu, Guangcai

, p. 10374 - 10378 (2020/04/23)

Peroxygenases are heme-dependent enzymes that use peroxide-borne oxygen to catalyze a wide range of oxyfunctionalization reactions. Herein, we report the engineering of an unusual cofactor-independent peroxygenase based on a promiscuous tautomerase that accepts different hydroperoxides (t-BuOOH and H2O2) to accomplish enantiocomplementary epoxidations of various α,β-unsaturated aldehydes (citral and substituted cinnamaldehydes), providing access to both enantiomers of the corresponding α,β-epoxy-aldehydes. High conversions (up to 98 %), high enantioselectivity (up to 98 % ee), and good product yields (50–80 %) were achieved. The reactions likely proceed via a reactive enzyme-bound iminium ion intermediate, allowing tweaking of the enzyme's activity and selectivity by protein engineering. Our results underscore the potential of catalytic promiscuity for the engineering of new cofactor-independent oxidative enzymes.

Borylation and rearrangement of alkynyloxiranes: A stereospecific route to substituted α-enynes

Fuentespina, Ruben Pomar,De La Cruz, José Angel Garcia,Durin, Gabriel,Mamane, Victor,Weibel, Jean-Marc,Pale, Patrick

supporting information, p. 1416 - 1424 (2019/07/10)

1,3-Enynes are important building blocks in organic synthesis and also constitute the key motif in various bioactive natural products and functional materials. However, synthetic approaches to stereodefined substituted 1,3-enynes remain a challenge, as they are limited to Wittig and cross-coupling reactions. Herein, stereodefined 1,3-enynes, including tetrasubstituted ones, were straightforwardly synthesized from cis or trans-alkynylated oxiranes in good to excellent yields by a one-pot cascade process. The procedure relies on oxirane deprotonation, borylation and a stereospecific rearrangement of the so-formed alkynyloxiranyl borates. This stereospecific process overall transfers the cis or trans-stereochemistry of the starting alkynyloxiranes to the resulting 1,3-enynes.

Palladium-Catalyzed Formation of Substituted Tetrahydropyrans: Mechanistic Insights and Structural Revision of Natural Products

Della-Felice, Franco,De Assis, Francisco F.,Sarotti, Ariel M.,Pilli, Ronaldo A.

supporting information, p. 1545 - 1560 (2019/03/26)

A comprehensive study on the stereochemical outcome of palladium-catalyzed formation of 2,4,6-trisubstituted tetrahydropyrans through cyclization of the corresponding allylic acetates using both Pd(0) and Pd(II) catalysts is presented. We have found that

A novel synthesis of (2S)-3-(2,4,5-trifluorophenyl)propane-1,2-diol by sharpless asymmetric epoxidation method

Anil, Derya,Altundas, Ramazan,Kara, Yunus

supporting information, p. 852 - 858 (2019/03/23)

Synthesis of (2S)-3-(2,4,5-trifluorophenyl)propane-1,2-diol by the Sharpless asymmetric epoxidation reaction has been achieved. 2,4,5-Trifluorobenzaldehyde with methyl 2-(triphenyl-λ5-phosphanylidene)acetate gave methyl (E)-3-(2,4,5-trifluorophenyl)acrylate in 83% yield. The reduction of ester group with DibalH followed by Sharpless asymmetric epoxidation gave ((2R,3R)-3-(2,4,5-trifluorophenyl)oxiran-2-yl)methanol. Pd/C-catalyzed hydrogenation of epoxy alcohol furnished (2S)-3-(2,4,5-trifluorophenyl)propane-1,2-diol with >90% ee and 71% yield.

Recoverable polystyrene-supported catalysts for Sharpless allylic alcohols epoxidations

Bartá?ek, Jan,Drabina, Pavel,Váňa, Ji?í,Sedlák, Milo?

, p. 123 - 132 (2019/02/27)

In this work, new heterogeneous catalysts intended for enantioselective Sharpless epoxidation were prepared. The catalysts are based on Ti(IV) complexes of cross-linked swellable spherical copolymer beads of styrene with ethyl-(4-vinylbenzyl)-L-tartrate, or with ethyl-(2R,3R)-2,3-dihydroxy-4-oxo-5-(4-vinylphenyl)pentanoate. These catalysts were tested in epoxidation of cinnamyl alcohols. High conversion (up to 99%) and high enantioselectivity (up to 99% ee) were achieved in the case of catalysts based on copolymers of styrene with ethyl-(4-vinylbenzyl)-L-tartrate (5, 20, 50%). Unfortunately, the copolymers lost their enantioselectivity due to the leaching of L-tartrate, caused by alcoholysis of ester bond. This problem has been overcome by replacing the ester bond by a stable keto bond. The prepared catalyst based on the copolymer of styrene with ethyl-(2R,3R)-2,3-dihydroxy-4-oxo-5-(4-vinylphenyl)pentanoate (20%) achieved a similarly high conversion and enantioselectivity as in the previous case (up to 99%, up to 99% ee) and was successfully recycled.

Efficient and selective oxidation of alcohols to carbonyl compounds at room temperature by a ruthenium complex catalyst and hydrogen peroxide

Wang, Jie-Xiang,Zhou, Xian-Tai,Han, Qi,Guo, Xiao-Xuan,Liu, Xiao-Hui,Xue, Can,Ji, Hong-Bing

, p. 19415 - 19421 (2019/12/24)

In this study, convenient and selective oxidation of alcohols using aqueous hydrogen peroxide to yield carbonyl compounds was studied. Using the ruthenium-(4-methylphenyl-2,6-bispydinyl) pyridinedicarboxylate complex [Ru(mpbp)(pydic)] as a catalyst, primary and secondary alcohols were oxidized to aldehydes and ketones at room temperature with a satisfactory yield and excellent selectivity. The influence of various reaction parameters, such as solvent, catalyst and oxidant amount on both the activity and selectivity was also evaluated. Kinetic studies showed that the oxidation of alcohol was first order in terms of the substrate and hydrogen peroxide, and was second order in terms of the catalyst. A plausible mechanism involving ruthenium-oxo species with electrophilic character was proposed based on the in situ UV-vis spectroscopy studies and Hammett plots.

Towards Mechanistic Understanding of Liquid-Phase Cinnamyl Alcohol Oxidation with tert-Butyl Hydroperoxide over Noble-Metal-Free LaCo1–xFexO3 Perovskites

Waffel, Daniel,Alkan, Baris,Fu, Qi,Chen, Yen-Ting,Schmidt, Stefan,Schulz, Christof,Wiggers, Hartmut,Muhler, Martin,Peng, Baoxiang

, p. 1155 - 1163 (2019/09/06)

Noble-metal-free perovskite oxides are promising and well-known catalysts for high-temperature gas-phase oxidation reactions, but their application in selective oxidation reactions in the liquid phase has rarely been studied. We report the liquid-phase oxidation of cinnamyl alcohol over spray-flame synthesized LaCo1–xFexO3 perovskite nanoparticles with tert-butyl hydroperoxide (TBHP) as the oxidizing agent under mild reaction conditions. The catalysts were characterized by XRD, BET, EDS and elemental analysis. LaCo0.8Fe0.2O3 showed the best catalytic properties indicating a synergistic effect between cobalt and iron. The catalysts were found to be stable against metal leaching as proven by hot filtration, and the observed slight deactivation is presumably due to segregation as determined by EDS. Kinetic studies revealed an apparent activation energy of 63.6 kJ mol?1. Combining kinetic findings with TBHP decomposition as well as control experiments revealed a complex reaction network.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 98819-68-2