1679-64-7Relevant articles and documents
Carboxyl Methyltransferase Catalysed Formation of Mono- and Dimethyl Esters under Aqueous Conditions: Application in Cascade Biocatalysis
Ashbrook, Chloe,Carnell, Andrew J.,Goulding, Ellie,Hatton, Harry,Johnson, James R.,Kershaw, Neil M.,McCue, Hannah V.,Rigden, Daniel J.,Ward, Lucy C.
supporting information, (2022/02/21)
Carboxyl methyltransferase (CMT) enzymes catalyse the biomethylation of carboxylic acids under aqueous conditions and have potential for use in synthetic enzyme cascades. Herein we report that the enzyme FtpM from Aspergillus fumigatus can methylate a broad range of aromatic mono- and dicarboxylic acids in good to excellent conversions. The enzyme shows high regioselectivity on its natural substrate fumaryl-l-tyrosine, trans, trans-muconic acid and a number of the dicarboxylic acids tested. Dicarboxylic acids are generally better substrates than monocarboxylic acids, although some substituents are able to compensate for the absence of a second acid group. For dicarboxylic acids, the second methylation shows strong pH dependency with an optimum at pH 5.5–6. Potential for application in industrial biotechnology was demonstrated in a cascade for the production of a bioplastics precursor (FDME) from bioderived 5-hydroxymethylfurfural (HMF).
Efficient Polyester Hydrogenolytic Deconstruction via Tandem Catalysis
Kratish, Yosi,Marks, Tobin J.
supporting information, (2021/12/22)
Using a mechanism-based solvent-free tandem catalytic approach, commodity polyester plastics such as polyethylene terephthalate (PET), polybutylene terephthalate (PBT), and polyethylene naphthalate (PEN) are rapidly and selectively deconstructed by combining the two air- and moisture-stable catalysts, Hf(OTf)4 and Pd/C, under 1 atm H2, affording terephthalic acid (or naphthalene dicarboxylic acid for PEN) and ethane (or butane for PBT) in essentially quantitative yield. This process is effective for both laboratory grade and waste plastics, and comingled polypropylene remains unchanged. Combined experimental and DFT mechanistic analyses indicate that Hf(OTf)4 catalyzes a mildly exergonic retro-hydroalkoxylation reaction in which an alkoxy C?O bond is first cleaved, yielding a carboxylic acid and alkene, and this process is closely coupled to an exergonic olefin hydrogenation step, driving the overall reaction forward.
Method for preparing methyl 4-cyanobenzoate and method for preparing 4-cyanobenzoic acid
-
Paragraph 0066-0068; 0075-0077, (2021/06/09)
The invention relates to the field of synthesis, and discloses a method for preparing methyl 4-cyanobenzoate and a method for preparing 4-cyanobenzoic acid. The method for preparing methyl 4-cyanobenzoate comprises the following steps: (1) in the presence of a first alkaline substance, carrying out a first hydrolysis reaction on dimethyl terephthalate to obtain monomethyl terephthalate; (2) subjecting the monomethyl terephthalate to a contact reaction with a chlorination reagent and ammonia water in sequence so as to obtain methyl 4-carbamoylbenzoate; and (3) carrying out a dehydration reaction on the methyl 4-carbamoylbenzoate to obtain the methyl 4-cyanobenzoate. According to the method for preparing the methyl 4-cyanobenzoate and the method for preparing the 4-cyanobenzoic acid, reaction raw materials are cheap and easy to obtain, and the target compounds can be efficiently prepared in an environment-friendly mode through the processes of hydrolysis, ammoniation, dehydration, optional selection and further hydrolysis.
Synthesis and characterization of polyethylene terephthalate (PET) precursors and potential degradation products: Toxicity study and application in discovery of novel PETases
Djapovic, Milica,Milivojevic, Dusan,Ilic-Tomic, Tatjana,Lje?evi?, Marija,Nikolaivits, Efstratios,Topakas, Evangelos,Maslak, Veselin,Nikodinovic-Runic, Jasmina
, (2021/03/01)
Polyethylene terephthalate (PET) is widely used material and as such became highly enriched in nature. It is generally considered inert and safe plastic, but due to the recent increased efforts to break-down PET using biotechnological approaches, we realized the scarcity of information about structural analysis of possible degradation products and their ecotoxicological assessment. Therefore, in this study, 11 compounds belonging to the group of PET precursors and possible degradation products have been comprehensively characterized. Seven of these compounds including 1-(2-hydroxyethyl)-4-methylterephthalate, ethylene glycol bis(methyl terephthalate), methyl bis(2-hydroxyethyl terephtahalate), 1,4-benzenedicarboxylic acid, 1,4-bis[2-[[4-(methoxycarbonyl)benzoyl]oxy]ethyl] ester and methyl tris(2-hydroxyethyl terephthalate) corresponding to mono-, 1.5-, di-, 2,5- and trimer of PET were synthetized and structurally characterized for the first time. In-silico druglikeness and physico-chemical properties of these compounds were predicted using variety of platforms. No antimicrobial properties were detected even at 1000 μg/mL. Ecotoxicological impact of the compounds against marine bacteria Allivibrio fischeri proved that the 6 out of 11 tested PET-associated compounds may be classified as harmful to aquatic microorganisms, with PET trimer being one of the most toxic. In comparison, most of the compounds were not toxic on human lung fibroblasts (MRC-5) at 200 μg/mL with inhibiting concentration (IC50) values of 30 μg/mL and 50 μg/mL determined for PET dimer and trimer. Only three of these compounds including PET monomer were toxic to nematode Caenorhabditis elegans at high concentration of 500 μg/mL. In terms of the applicative potential, PET dimer can be used as suitable substrate for the screening, identification and characterization of novel PET-depolymerizing enzymes.
PREPARATION OF AROMATIC CARBONYL COMPOUNDS BY CATALYTIC OXIDATION WITH MOLECULAR OXYGEN
-
Page/Page column 12, (2021/08/20)
The present invention relates to a process for the preparation of aromatic carbonyl compounds of formula I, which can be obtained through reaction of compounds of formula II with molecular oxygen in the presence of a solvent and a catalyst, which is composed of a cobalt(II) salt and N,N',N''-trihydroxyisocyanuric acid (THICA).
Isotruxene-based porous polymers as efficient and recyclable photocatalysts for visible-light induced metal-free oxidative organic transformations
Zhang, Haowen,Zhang, Xiao,Zheng, Ying,Zhou, Cen
supporting information, p. 8878 - 8885 (2021/11/27)
Two new isotruxene-based porous polymers were prepared and demonstrated to be highly efficient, metal-free heterogeneous photocatalysts for oxidative transformations using air as the mild oxidant under visible-light irradiation. Both catalysts show excellent recyclability. In addition, the reactions can be performed in water, further indicating the greenness of this method. This journal is
Silica-Mediated Monohydrolysis of Dicarboxylic Esters
Dyker, Gerald
supporting information, p. 6773 - 6776 (2021/12/31)
A new method for the monohydrolysis of dicarboxylic esters is presented, involving as key step a silanolysis at elevated temperatures at the silica gel surface. In the second step, the surface bound silyl esters are cleaved off under mild conditions, giving a straightforward and fast access to half esters. Based on recovered starting material generally yields well above 70 % are achieved, both, with stiff aromatic as well as flexible aliphatic substrates, as long as the ester groups involved are remote enough from each other. Otherwise competing reactions are becoming determinative, anhydride formation in the case of phthalates and decarbonylative fragmentation in the case of malonates. The new method was also successfully tested on a multigram scale with a minimalistic apparatus setup.
Oxidative carbon-carbon bond cleavage of 1,2-diols to carboxylic acids/ketones by an inorganic-ligand supported iron catalyst
Chen, Weiming,Xie, Xin,Zhang, Jian,Qu, Jian,Luo, Can,Lai, Yaozhu,Jiang, Feng,Yu, Han,Wei, Yongge
supporting information, p. 9140 - 9146 (2021/11/23)
The carbon-carbon bond cleavage of 1,2-diols is an important chemical transformation. Although traditional stoichiometric and catalytic oxidation methods have been widely used for this transformation, an efficient and valuable method should be further explored from the views of reusable catalysts, less waste, and convenient procedures. Herein an inorganic-ligand supported iron catalyst (NH4)3[FeMo6O18(OH)6]·7H2O was described as a heterogeneous molecular catalyst in acetic acid for this transformation in which hydrogen peroxide was used as the terminal oxidant. Under the optimized reaction conditions, carbon-carbon bond cleavage of 1,2-diols could be achieved in almost all cases and carboxylic acids or ketones could be afforded with a high conversion rate and high selectivity. Furthermore, the catalytic system was used efficiently to degrade renewable biomass oleic acid. Mechanistic insights based on the observation of the possible intermediates and control experiments are presented.
1,2-Dibutoxyethane-Promoted Oxidative Cleavage of Olefins into Carboxylic Acids Using O2 under Clean Conditions
Ou, Jinhua,Tan, Hong,He, Saiyu,Wang, Wei,Hu, Bonian,Yu, Gang,Liu, Kaijian
, p. 14974 - 14982 (2021/10/25)
Herein, we report the first example of an effective and green approach for the oxidative cleavage of olefins to carboxylic acids using a 1,2-dibutoxyethane/O2 system under clean conditions. This novel oxidation system also has excellent functional-group tolerance and is applicable for large-scale synthesis. The target products were prepared in good to excellent yields by a one-pot sequential transformation without an external initiator, catalyst, and additive.
Ni-Catalyzed Cross-Electrophile Coupling of Aryl Triflates with Thiocarbonates via C-O/C-O Bond Cleavage
Zhu, Zhaodong,Gong, Yuxin,Tong, Weiqi,Xue, Weichao,Gong, Hegui
supporting information, p. 2158 - 2163 (2021/04/05)
A nickel-catalyzed reductive coupling of aryl triflates with thiocarbonates is reported here. Both electron-rich and -deficient aryl C(sp2)-O electrophiles as well as a class of O-tBu S-alkyl thiocarbonates are compatible with the optimized reaction conditions, as evidenced by 49 examples. The reaction also proceeds with good chemoselective cleavage of the C-O bond with regard to thioesters. This work broadens the scope of nickel-catalyzed reductive cross-electrophile coupling reactions.