20216-88-0Relevant articles and documents
Lithium naphthalenide-induced reductive alkylation and addition of aryl-and heteroaryl-substituted dialkylacetonitriles
Tsao, Jing-Po,Tsai, Ting-Yueh,Chen, I-Chia,Liu, Hsing-Jang,Zhu, Jia-Liang,Tsao, Sheng-Wei
experimental part, p. 4242 - 4250 (2011/02/25)
Lithium naphthalenide (LN)-induced reductive alkylation/addition reactions of aryl-, pyridyl-, and 2-thienyl-substituted dialkylacetonitriles have been investigated. Upon treatment with LN in THF at -40°C, both aryl and pyridyl precursors could undergo the reductive decyanation smoothly, and the in situ generated carbanions could be readily trapped by alkyl halides, ketones, aldehydes, or even oxygen to afford a wide range of functionalized aromatic derivatives bearing a newly established quaternary carbon. To effect the desired reductive alkylation of 2-thienyldialkylacetonitriles, a much lower temperature such as -100°C was required. Also with these substrates, an interesting ring-opening/S-alkylation process was observed when the reductive alkylation were performed at -78°C to give 1-alkylsulfanyl-1,3,4-trienes. A mechanistic discussion is given for this observation.
Synergistic effects of alkali metals in the alkylation of naphthalene and toluene with ethene in the ArH-alkali metal systems in THF (ArH - naphthalene, phenanthrene)
Rummel,Yunusov,Kalyuzhnaya,Shur
experimental part, p. 1467 - 1472 (2009/09/06)
The use of mixtures of metallic lithium and sodium in the naphthalene-alkali metal systems in THF leads to a synergistic acceleration of the naphthalene alkylation with ethene at room temperature and atmospheric pressure. The greatest synergistic effect is observed at a Li:Na molar ratio of 2:1. Under these conditions, the overall conversion of naphthalene into alkylation products (linear 1-alkylnaphthalenes and their dihydro derivatives) attains 88% after 24 h (a (Li + Na):C10H8 ratio is 2:1). The use of mixtures of metallic lithium and potassium in such systems results, however, in a synergistic retardation of the alkylation process. The strongest retarding effect is observed at a Li:K molar ratio of 1:1. The efficiency of the toluene alkylation with ethene in the naphthalene-alkali metal systems in THF is also increased on the replacement of lithium or sodium by their mixtures. The best results are obtained at a Li:Na molar ratio of 1:3. With this Li:Na ratio, toluene is almost quantitatively converted into linear and α-branched higher monoalkylbenzenes (24 h, (Li + Na):C10H8 = 2:1). The rate of the naphthalene alkylation with ethene in the presence of toluene is enhanced as well on an introduction of mixtures of lithium and sodium into the system. However the maximum of the activity is shifted here towards higher lithium content (Li:Na = 1:1). A similar synergistic effect of lithium and sodium was found on studying the toluene alkylation with ethene in the phenanthrene-Li-Na systems in THF (a (Li + Na):phenanthrene ratio is 3:1). An addition of potassium to sodium also considerably increases the efficiency of the toluene and naphthalene alkylation with ethene in the naphthalene-based systems. The possible mechanism of the alkali metal synergism in the above-mentioned alkylation reactions is discussed.
Activation of C-H bonds of hydrocarbons by the ArH-alkali metal systems in THF (ArH - naphthalene, biphenyl, anthracene, phenanthrene, trans-stilbene, pyrene). Alkylation of naphthalene and toluene with ethene
Rummel,Ilatovskaya,Yunusov,Kalyuzhnaya,Shur
scheme or table, p. 1459 - 1466 (2009/09/06)
Systems based on naphthalene and alkali metals (Li, Na, K) in THF are able to induce the alkylation of naphthalene with ethene at room temperature and atmospheric pressure. The highest activity in this reaction is exhibited by the naphthalene-potassium system which converts naphthalene into 1-ethylnaphthalene (1) and small amounts of two isomeric dihydro derivatives of 1 in a yield of 85% (24 h, K:C10H8 = 2:1). The same alkylation products are formed when metallic sodium is used instead of potassium. The interaction of ethene with the naphthalene-lithium system (24 h, Li:C10H8 = 2:1) affords 1 together with 1-n-butylnaphthalene (4), 1-n-hexylnaphthalene (5), 1-n-oktylnaphthalene (6) and dihydro derivatives of 5 and 6 in a total yield of 60%. Alkylation of toluene with ethene in the naphthalene-alkali metal systems leads to the formation of higher monoalkylbenzenes. The greatest toluene conversion (48%, 24 h) is observed on using the lithium-containing system (Li:C10H8 = 2:1), in the presence of which a mixture of n-propylbenzene (11), n-pentylbenzene (12), 3-phenylpentane (13) and 3-phenylheptane (14) is produced from ethene and toluene. On the replacement of lithium by sodium or potassium, only 11 and 13 are obtained. A treatment of biphenyl, phenanthrene, trans-stilbene, pyrene and anthracene with alkali metals in THF also gives systems capable of catalyzing the alkylation of toluene with ethene at 22 °C. Of particularly active is the stilbene-lithium system (Li:stilbene = 3:1) which converts toluene into a mixture of 11-14, n-heptylbenzene and 5-phenylnonane in a yield of 58%. In all cases, the rate of the alkylation considerably increases in the presence of the solid phase of alkali metal. The mechanism of the reactions found is discussed.
Single and double reductive cleavage of C-O bonds of aromatic dimethyl acetals and ketals: Generation of benzylic mono- and dicarbanions
Azzena,Melloni,Pisano,Sechi
, p. 6759 - 6762 (2007/10/02)
The reductive cleavage of aromatic dimethyl acetals and ketals, 1, with Li metal in THF at low temperature allows the generation of stable α-alkoxy-α-arylsubstituted carbanions, avoiding the Wittig rearrangement. Reaction of these carbanions with various electrophiles afforded the expected products 2. Further in situ reaction of compounds 2 afforded the products of reductive electrophilic disubstitution, 3.
Carbanion Rearrangements by Intramolecular 1,ω Proton Shifts, III. The Reaction of 2-, 3-, 4-, and 5-Phenylalkyllithium Compounds
Maercker, Adalbert,Passlack, Michael
, p. 540 - 577 (2007/10/02)
Upon addition of THF to a solution of 4-phenylbutyllithium (2) in diethyl ether a rapid intramolecular 1,4 proton shift takes place with the formation of 1-phenylbutyllithium (5).Similarly, although somewhat more slowly, 5-phenylpentyllithium (82) rearranges to 1-phenylpentyllithium (83) via 1,5 proton transfer.The corresponding rearrangements by 1,2 or 1,3 hydrogen shifts, however, starting with 2-phenylethyllithium (1) and 3-phenylpropyllithium (54), respectively, were not detected.With 3-phenylpropyllithium (54) a slow intramolecular 1,5 transfer an ortho proton is observed instead, yielding o-propylphenyllithium (100).The corresponding 1,6 shift with 4-phenylbutyllithium (2) was also detected in a minor amount in addition to the 1,4 proton shift already mentioned.There is no indication, however, for a 1,4 transfer of an ortho proton in 2-phenylethyllithium (1).The reaction products in this case can be exclusively explained by intermolecular transmetallation reactions.All ω-phenylalkyllithium compounds under investigation show interesting side and secondary reactions being rather different in deuterated solvents and in deuteriumfree solvents, respectively, due to the isotope effects.The analysis of the products is accomplished by 1H-NMR spectroscopy and, after derivatization, with the help of a GC-MS-combination.Stereoelectronic reasons are made responsible for the failure of the intramolecular 1,2 and 1,3 proton shift in these systems.