2114-33-2Relevant articles and documents
Alternative and mild procedures for the removal of organotin residues from reaction mixtures
Renaud, Philippe,Lacote, Emmanuel,Quaranta, Laura
, p. 2123 - 2126 (1998)
Simple treatment of tributyltin halide-containing reaction mixtures with Me3Al or aq. 1M NaOH leads after filtration through silica gel to complete removal of tin residues. The Me3Al method is particularly convenient for polar products and the NaOH method for non-polar products.
Discovery and Redesign of a Family VIII Carboxylesterase with High (S)-Selectivity toward Chiral sec-Alcohols
Park, Areum,Park, Seongsoon
, p. 2397 - 2402 (2022/02/17)
Highly enantioselective lipase has been widely utilized in the preparation of versatile enantiopure chiral sec-alcohols through kinetic or dynamic kinetic resolution. Lipase is intrinsically (R)-selective, and it is difficult to obtain (S)-selective lipase. Recent crystal structures of a family VIII carboxylesterase have revealed that the spatial array of its catalytic triad is the mirror image of that of lipase but with a catalytic triad that is distinct from lipase. We, therefore, hypothesized that the family VIII carboxylesterase may exhibit (S)-enantioselectivity toward sec-alcohols similar to (S)-selective serine protease, whose catalytic triad is also spatially arrayed as its mirror image. In this study, a homologous enzyme (carboxylesterase from Proteobacteria bacterium SG_bin9, PBE) of a known family VIII carboxylesterase (pdb code: 4IVK) was prepared, which showed not only moderate (S)-selectivity toward sec-alcohols such as 3-butyn-2-ol and 1-phenylethyl alcohol but also (R)-selectivity toward particular sec-alcohols among the substrates explored. Furthermore, the (S)-selectivity of PBE has been significantly improved by rational redesign based on molecular modeling. Molecular modeling identified a binding pocket composed of Ser381, Ala383, and Arg408 for the methyl substituent of (R)-1-phenylethyl acetate and suggested that larger residues may increase the enantioselectivity by interfering with the binding of the slow-reacting enantiomer. As predicted, substituting Ser381with larger residues (Phe, Tyr, and Trp) significantly improved the (S)-selectivity of PBE toward all sec-alcohols explored, even the substrates toward which the wild-type PBE exhibits (R)-selectivity. For instance, the enantioselectivity toward 3-butyn-2-ol and 1-phenylethyl alcohol was improved from E = 5.5 and 36.1 to E = 2001 and 882, respectively, by single mutagenesis (S381F).
Base-Free Dynamic Kinetic Resolution of Secondary Alcohols with a Ruthenium-Lipase Couple
Yun, Inyeol,Park, Jin Yong,Park, Jaiwook,Kim, Mahn-Joo
, p. 16293 - 16298 (2019/12/27)
We report the dynamic kinetic resolution (DKR) of various secondary alcohols by the combination of a ruthenium catalyst and an anionic surfactant-activated lipoprotein lipase. The DKR reactions performed under totally base-free conditions at room temperature provided the products of excellent enantiopurities (91-99% ee or greater) in high yields (92-99%). More importantly, the DKR of α-arylallyl alcohols was achieved for the first time with high yields (87-91%).
CALB immobilized onto magnetic nanoparticles for efficient kinetic resolution of racemic secondary alcohols: Long-term stability and reusability
Xing, Xiu,Jia, Jun-Qi,Zhang, Jing-Fan,Zhou, Zi-Wen,Li, Jun,Wang, Na,Yu, Xiao-Qi
, (2019/02/03)
In this study, an immobilization strategy for magnetic cross-linking enzyme aggregates of lipase B from Candida antarctica (CALB) was developed and investigated. Magnetic particles were prepared by conventional co-precipitation. The magnetic nanoparticles were modified with 3-aminopropyltriethoxysilane (APTES) to obtain surface amino-functionalized magnetic nanoparticles (APTES–Fe3O4) as immobilization materials. Glutaraldehyde was used as a crosslinker to covalently bind CALB to APTES–Fe3O4. The optimal conditions of immobilization of lipase and resolution of racemic 1-phenylethanol were investigated. Under optimal conditions, esters could be obtained with conversion of 50%, enantiomeric excess of product (eep) > 99%, enantiomeric excess of substrate (ees) > 99%, and enantiomeric ratio (E) > 1000. The magnetic CALB CLEAs were successfully used for enzymatic kinetic resolution of fifteen secondary alcohols. Compared with Novozym 435, the magnetic CALB CLEAs exhibited a better enantioselectivity for most substrates. The conversion was still greater than 49% after the magnetic CALB CLEAs had been reused 10 times in a 48 h reaction cycle; both ees and eep were close to 99%. Furthermore, there was little decrease in catalytic activity and enantioselectivity after being stored at ?20 ?C for 90 days.
Expanding the Substrate Specificity of Thermoanaerobacter pseudoethanolicus Secondary Alcohol Dehydrogenase by a Dual Site Mutation
Musa, Musa M.,Bsharat, Odey,Karume, Ibrahim,Vieille, Claire,Takahashi, Masateru,Hamdan, Samir M.
, p. 798 - 805 (2018/02/21)
Here, we report the asymmetric reduction of selected phenyl-ring-containing ketones by various single- and dual-site mutants of Thermoanaerobacter pseudoethanolicus secondary alcohol dehydrogenase (TeSADH). The further expansion of the size of the substrate binding pocket in the mutant W110A/I86A not only allowed the accommodation of substrates of the single mutants W110A and I86A within the expanded active site but also expanded the substrate range of the enzyme to ketones bearing two sterically demanding groups (bulky–bulky ketones), which are not substrates for the TeSADH single mutants. We also report the regio- and enantioselective reduction of diketones with W110A/I86A TeSADH and single TeSADH mutants. The double mutant exhibited dual stereopreference to generate the Prelog products most of the time and the anti-Prelog products in a few cases.
Ester Synthesis in Water: Mycobacterium smegmatis Acyl Transferase for Kinetic Resolutions
de Leeuw, Nicolas,Torrelo, Guzman,Bisterfeld, Carolin,Resch, Verena,Mestrom, Luuk,Straulino, Emanuele,van der Weel, Laura,Hanefeld, Ulf
, p. 242 - 249 (2017/11/16)
The acyl transferase from Mycobacterium smegmatis (MsAcT) catalyses transesterification reactions in aqueous media because of its hydrophobic active site. Aliphatic cyanohydrin and alkyne esters can be synthesised in water with excellent and strikingly opposite enantioselectivity [(R);E>37 and (S);E>100, respectively]. When using this enzyme, the undesired hydrolysis of the acyl donor is an important factor to take into account. Finally, the choice of acyl donor can significantly influence the obtained enantiomeric excesses. (Figure presented.).
CO2-expanded bio-based liquids as novel solvents for enantioselective biocatalysis
Hoang, Hai Nam,Nagashima, Yoshihiro,Mori, Shuichi,Kagechika, Hiroyuki,Matsuda, Tomoko
, p. 2984 - 2989 (2017/04/26)
For the first time, CO2-expanded bio-based liquids were reported as novel and sustainable solvents for biocatalysis. Herein, it was found that by expansion with CO2, 2-methyltetrahydrofuran (MeTHF), and other bio-based liquids, which were not favorable solvents for immobilized Candida antarctica lipase B (Novozym 435) catalyzed transesterification, were tuned into excellent reaction media. Especially, for the kinetic resolution of challenging bulky secondary substrates such as rac-1-adamantylethanol, the lipase displayed very high activity with excellent enantioselectivity (E value > 200) in CO2-expanded MeTHF (MeTHF concentration 10% v/v, 6 MPa), whereas there was almost no activity observed in conventional organic solvents.
Dual enzymatic dynamic kinetic resolution by Thermoanaerobacter ethanolicus secondary alcohol dehydrogenase and Candida antarctica lipase B
Karume, Ibrahim,Musa, Musa M.,Bsharat, Odey,Takahashi, Masateru,Hamdan, Samir M.,El Ali, Bassam
, p. 96616 - 96622 (2016/10/25)
The immobilization of Thermoanaerobacter ethanolicus secondary alcohol dehydrogenase (TeSADH) using sol-gel method enables its use to racemize enantiopure alcohols in organic media. Here, we report the racemization of enantiopure phenyl-ring-containing secondary alcohols using xerogel-immobilized W110A TeSADH in hexane rather than the aqueous medium required by the enzyme. We further showed that this racemization approach in organic solvent was compatible with Candida antarctica lipase B (CALB)-catalyzed kinetic resolution. This compatibility, therefore, allowed a dual enzymatic dynamic kinetic resolution of racemic alcohols using CALB-catalyzed kinetic resolution and W110A TeSADH-catalyzed racemization of phenyl-ring-containing alcohols.
Improved enantioselectivity of thermostable esterase ST0071 from archaeon Sulfolobus tokodaii by site-saturation mutagenesis
Ozaki, Masanaru,Kawakami, Norifumi,Ohta, Hiromichi,Miyamoto, Kenji
, p. 249 - 252 (2016/12/16)
An archaeon GGG(A)X-type esterase (ST0071) can catalyze the hydrolysis of various acetates of secondary alcohols, but shows low enantioselectivity. Using structure-guided site-saturation mutagenesis, we successfully identified a G274W variant that has excellent selectivity compared with that of wild-type ST0071.
Deracemization of Secondary Alcohols by using a Single Alcohol Dehydrogenase
Karume, Ibrahim,Takahashi, Masateru,Hamdan, Samir M.,Musa, Musa M.
, p. 1459 - 1463 (2016/05/02)
We developed a single-enzyme-mediated two-step approach for deracemization of secondary alcohols. A single mutant of Thermoanaerobacter ethanolicus secondary alcohol dehydrogenase enables the nonstereoselective oxidation of racemic alcohols to ketones, followed by a stereoselective reduction process. Varying the amounts of acetone and 2-propanol cosubstrates controls the stereoselectivities of the consecutive oxidation and reduction reactions, respectively. We used one enzyme to accomplish the deracemization of secondary alcohols with up to >99 % ee and >99.5 % recovery in one pot and without the need to isolate the prochiral ketone intermediate.