5705-57-7Relevant articles and documents
Photocatalysis in Aqueous Micellar Media Enables Divergent C-H Arylation and N-Dealkylation of Benzamides
Cybularczyk-Cecotka, Martyna,Predygier, J?drzej,Crespi, Stefano,Szczepanik, Joanna,Giedyk, MacIej
, p. 3543 - 3549 (2022/03/27)
Photocatalysis in aqueous micellar media has recently opened wide avenues to activate strong carbon-halide bonds. So far, however, it has mainly explored strongly reducing conditions, restricting the available chemical space to radical or anionic reactivity. Here, we demonstrate a controllable, photocatalytic strategy that channels the reaction of chlorinated benzamides via either a radical or a cationic pathway, enabling a chemodivergent C-H arylation or N-dealkylation. The catalytic system operates under mild conditions with methylene blue as a photocatalyst and blue LEDs as the light source. Factors determining the reactivity of substrates, their selectivity, and preliminary mechanistic studies are presented.
Photochemical Activation of Aromatic Aldehydes: Synthesis of Amides, Hydroxamic Acids and Esters
Nikitas, Nikolaos F.,Apostolopoulou, Mary K.,Skolia, Elpida,Tsoukaki, Anna,Kokotos, Christoforos G.
supporting information, p. 7915 - 7922 (2021/05/03)
A cheap, facile and metal-free photochemical protocol for the activation of aromatic aldehydes has been developed. Utilizing thioxanthen-9-one as the photocatalyst and cheap household lamps as the light source, a variety of aromatic aldehydes have been activated and subsequently converted in a one-pot reaction into amides, hydroxamic acids and esters in good to high yields. The applicability of this method was highlighted in the synthesis of Moclobemide, a drug against depression and social anxiety. Extended and detailed mechanistic studies have been conducted, in order to determine a plausible mechanism for the reaction.
NaOTs-promoted transition metal-free C-N bond cleavage to form C-X (X = N, O, S) bonds
Chen, Wei,Liu, Sicheng,Liu, Tingting,Majeed, Irfan,Ye, Xiaojing,Zeng, Zhuo,Zhang, Yuqi,Zhu, Yulin
, p. 8566 - 8571 (2021/10/20)
Multifunctional transformation of amide C-N bond cleavage is reported. The protocol applies to benzamide, thioamide, alcohols, and mercaptan under similar reaction conditions catalyzed by NaOTs. It is noteworthy that NaOTs can not only be recycled and reused for up to three cycles without significant loss in catalytic activity, but also catalyze gram-grade reactions. This study provides a novel solution with mild conditions and a simple procedure for transformation of multiple amides.
Photocatalyzed Triplet Sensitization of Oximes Using Visible Light Provides a Route to Nonclassical Beckmann Rearrangement Products
Zhang, Xiao,Rovis, Tomislav
, p. 21211 - 21217 (2021/12/27)
Oximes are valuable synthetic intermediates for the preparation of a variety of functional groups. To date, the stereoselective synthesis of oximes remains a major challenge, as most current synthetic methods either provide mixtures of E and Z isomers or furnish the thermodynamically preferred E isomer. Herein we report a mild and general method to achieve Z isomers of aryl oximes by photoisomerization of oximes via visible-light-mediated energy transfer (EnT) catalysis. Facile access to (Z)-oximes provides opportunities to achieve regio- and chemoselectivity complementary to those of widely used transformations employing oxime starting materials. We show an enhanced one-pot protocol for photocatalyzed oxime isomerization and subsequent Beckmann rearrangement that enables novel reactivity with alkyl groups migrating preferentially over aryl groups, reversing the regioselectivity of the traditional Beckmann reaction. Chemodivergent N- or O- cyclizations of alkenyl oximes are also demonstrated, leading to nitrones or cyclic oxime ethers, respectively.
UV-Light-Induced N-Acylation of Amines with α-Diketones
Xu, Zhihui,Yang, Tianbao,Tang, Niu,Ou, Yifeng,Yin, Shuang-Feng,Kambe, Nobuaki,Qiu, Renhua
supporting information, p. 5329 - 5333 (2021/07/21)
Herein, we develop a mild method for N-acylation of primary and secondary amines with α-diketones induced by ultraviolet (UV) light. Forty-six examples with various functional groups are explored at room temperature with irradiation by three 26 W UV lamps (350-380 nm). The yield reaches 97%. The gram scale experiment product yield is 76%. Moreover, this system can be applied to the synthesis of several amino acid derivatives. Mechanistic studies show that benzoin is generated in situ from benzil under UV irradiation.
Carboxyesterase polypeptides for amide coupling
-
Page/Page column 61-62; 65-84, (2021/05/28)
The present invention provides engineered carboxyesterase enzymes having improved properties as compared to a naturally occurring wild-type carboxyesterase enzymes, as well as polynucleotides encoding the engineered carboxyesterase enzymes, host cells capable of expressing the engineered carboxyesterase enzymes, and methods of using the engineered carboxyesterase enzymes in amidation reactions.
Practical one-pot amidation of N -Alloc-, N -Boc-, and N -Cbz protected amines under mild conditions
Hong, Wan Pyo,Tran, Van Hieu,Kim, Hee-Kwon
, p. 15890 - 15895 (2021/05/19)
A facile one-pot synthesis of amides from N-Alloc-, N-Boc-, and N-Cbz-protected amines has been described. The reactions involve the use of isocyanate intermediates, which are generated in situ in the presence of 2-chloropyridine and trifluoromethanesulfonyl anhydride, to react with Grignard reagents to produce the corresponding amides. Using this reaction protocol, a variety of N-Alloc-, N-Boc-, and N-Cbz-protected aliphatic amines and aryl amines were efficiently converted to amides with high yields. This method is highly effective for the synthesis of amides and offers a promising approach for facile amidation.
An unprecedented cobalt-catalyzed selective aroylation of primary amines with aroyl peroxides
Li, Dong,Li, Jiale,Li, Juanjuan,Yuan, Songdong,Zhang, Qian
supporting information, (2020/09/16)
A novel and facile cobalt-catalyzed selective aroylation of primary amines with aroyl peroxides was developed for the synthesis of aryl amides. It was unprecedented that C[sbnd]N bond formation product was selectively generated without the common N[sbnd]O bond formation product. Aroyl peroxides act as the sole aroylation reagent without additional base or oxidant. The reactions proceeded under mild conditions and showed broad substrates scope with a series of primary amines and aroyl peroxides.
Triethyl Phosphite/Benzoyl Peroxide Mediated Reductive Dealkylation of O-Benzoylhydroxylamines: A Cascade Synthesis of Secondary Amides
Aegurla, Balakrishna,Mandle, Ram D.,Shinde, Prasad G.,Parit, Ratan S.,Kamble, Sanjay P.,Sudalai, Arumugam,Senthilkumar, Beeran
supporting information, p. 4235 - 4238 (2020/07/04)
A new triethyl phosphite/benzoyl peroxide (BPO) mediated system has been developed for the synthesis of secondary amides with good to excellent yields in a single step. This unprecedented cascade process involves sequential reduction of N–O bond and benzoylation followed by dealkylation of N–C bond of O-benzoylhydroxylamines (O-BHA). The methodology is versatile as it tolerates a variety of aromatic and aliphatic O-BHA as substrates to access secondary amides.
Copper-Catalyzed Radical N-Demethylation of Amides Using N-Fluorobenzenesulfonimide as an Oxidant
Yi, Xuewen,Yi, Xuewen,Lei, Siyu,Liu, Wangsheng,Che, Fengrui,Yu, Chunzheng,Liu, Xuesong,Wang, Zonghua,Zhou, Xin,Zhang, Yuexia
supporting information, p. 4583 - 4587 (2020/05/05)
An unprecedented N-demethylation of N-methyl amides has been developed by use of N-fluorobenzenesulfonimide as an oxidant with the aid of a copper catalyst. The conversion of amides to carbinolamines involves successive single-electron transfer, hydrogen-atom transfer, and hydrolysis, and is accompanied by formation of N-(phenylsulfonyl)benzenesulfonamide. Carbinolamines spontaneously decompose to N-demethylated amides and formaldehyde, because of their inherent instability.