6117-91-5Relevant articles and documents
Probing the Interface between Encapsulated Nanoparticles and Metal-Organic Frameworks for Catalytic Selectivity Control
Lo, Wei-Shang,Chou, Lien-Yang,Young, Allison P.,Ren, Chenhao,Goh, Tian Wei,Williams, Benjamin P.,Li, Yang,Chen, Sheng-Yu,Ismail, Mariam N.,Huang, Wenyu,Tsung, Chia-Kuang
, (2021/02/16)
Encapsulating metal nanoparticles (NPs) in metal-organic frameworks (MOFs) to control catalytic selectivity has recently attracted great attention; however, an understanding of the NP-MOF interface is lacking. In this work, we used spectroscopy to investi
Preparation method of 2-butenol
-
Paragraph 0014-0040, (2021/08/14)
The invention discloses a preparation method of 2-butenol, which comprises the following steps of: reacting 2-butenol and isopropanol serving as reaction raw materials, aluminum isopropoxide serving as a catalyst I and metal chloride or metal oxide servin
Metal-doped mesoporous ZrO2catalyzed chemoselective synthesis of allylic alcohols from Meerwein-Ponndorf-Verley reduction of α,β-unsaturated aldehydes
Akinnawo, Christianah Aarinola,Bingwa, Ndzondelelo,Meijboom, Reinout
, p. 7878 - 7892 (2021/05/13)
Meerwein-Ponndorf-Verley reduction (MPVr) is a sustainable route for the chemoselective transformation of α,β-unsaturated aldehydes. However, tailoring ZrO2 catalysts for improved surface-active sites and maximum performance in the MPV reaction is still a challenge. Here, we synthesized mesoporous zirconia (ZrO2) and metal-doped zirconia (M_ZrO2, M = Cr, Mn, Fe, and Ni). The incorporation of metal dopants into zirconia's crystal framework alters its physico-chemical properties such as surface area and total acidity-basicity. The prepared catalysts were evaluated in the MPVr using 2-propanol as a hydrogen donor under mild reaction conditions. The catalysts' remarkable reactivity depends mainly on their surface mesostructure's intrinsic properties rather than the specific surface area. Cr_ZrO2, which is stable and sustainable, presented superior activity and 100% selectivity to unsaturated alcohols. The synergistic effect between Cr and Zr species in the binary oxide facilitated the Lewis acidity-induced performance of the Cr_ZrO2 catalyst. Our work presents the first innovative application of a well-designed mesoporous Cr_ZrO2 in the green synthesis of unsaturated alcohols with exceptional reactivity. This journal is
The roles of metal-promoter interface on liquid phase selective hydrogenation of crotonaldehyde over Ir-MoOx/BN catalysts
Jia, Aiping,Lu, Jiqing,Luo, Mengfei,Tang, Cen,Wen, Yang,Xu, Yumeng,Zhou, Fangru
, (2021/06/26)
A series of MoOx-promoted Ir/BN catalysts were tested for liquid phase selective hydrogenation of crotonaldehyde. The MoOx-promotion could significantly improve the reactivity up to 5-fold. Such improvement was mainly due to the form
Thermal Unequilibrium of PdSn Intermetallic Nanocatalysts: From In Situ Tailored Synthesis to Unexpected Hydrogenation Selectivity
Chen, Minda,Dolge, Kevin,Gebre, Mebatsion,Heintz, Patrick,Huang, Wenyu,Jing, Dapeng,Lamkins, Andrew,Liu, Fudong,Ordonez, Claudio,Qi, Long,Shoemaker, Daniel P.,Wang, Bin,Yan, Yu,Zhang, Biying
supporting information, p. 18309 - 18317 (2021/07/20)
Effective control on chemoselectivity in the catalytic hydrogenation of C=O over C=C bonds is uncommon with Pd-based catalysts because of the favored adsorption of C=C bonds on Pd surface. Here we report a unique orthorhombic PdSn intermetallic phase with unprecedented chemoselectivity toward C=O hydrogenation. We observed the formation and metastability of this PdSn phase in situ. During a natural cooling process, the PdSn nanoparticles readily revert to the favored Pd3Sn2 phase. Instead, using a thermal quenching method, we prepared a pure-phase PdSn nanocatalyst. PdSn shows an >96 % selectivity toward hydrogenating C=O bonds of various α,β-unsaturated aldehydes, highest in reported Pd-based catalysts. Further study suggests that efficient quenching prevents the reversion from PdSn- to Pd3Sn2-structured surface, the key to the desired catalytic performance. Density functional theory calculations and analysis of reaction kinetics provide an explanation for the observed high selectivity.
Catalytic Asymmetric Allylic Substitution with Copper(I) Homoenolates Generated from Cyclopropanols
Shi, Chang-Yun,Yin, Liang,Zhang, Qi,Zhou, Si-Wei
supporting information, p. 26351 - 26356 (2021/11/09)
By using copper(I) homoenolates as nucleophiles, which are generated through the ring-opening of 1-substituted cyclopropane-1-ols, a catalytic asymmetric allylic substitution with allyl phosphates is achieved in high to excellent yields with high enantioselectivity. Both 1-substituted cyclopropane-1-ols and allylic phosphates enjoy broad substrate scopes. Remarkably, various functional groups, such as ether, ester, tosylate, imide, alcohol, nitro, and carbamate are well tolerated. Moreover, the present method is nicely extended to the asymmetric construction of quaternary carbon centers. Some control experiments argue against a radical-based reaction mechanism and a catalytic cycle based on a two-electron process is proposed. Finally, the synthetic utilities of the product are showcased by means of the transformations of the terminal olefin group and the ketone group.
Vapor-phase dehydration of 1,4-butanediol to 1,3-butadiene over Y2Zr2O7 catalyst
Matsuda, Asami,Matsumura, Yoshitaka,Sato, Satoshi,Yamada, Yasuhiro
, (2021/09/16)
Vapor-phase catalytic dehydration of 1,4-butanediol (1,4-BDO) was investigated over Y2O3-ZrO2 catalysts. In the dehydration, 1,3-butadiene (BD) together with 3-buten-1-ol (3B1OL), tetrahydrofuran, and propylene was produced depending on the reaction conditions. In the dehydration over Y2O3-ZrO2 catalysts with different Y contents at 325°C, Y2Zr2O7 with an equimolar ratio of Y/Zr showed high selectivity to 3B1OL, an intermediate to BD. In the dehydration at 360°C, a BD yield higher than 90% was achieved over the Y2Zr2O7 calcined at 700°C throughout 10 h. In the dehydration of 3B1OL over Y2Zr2O7, however, the catalytic activity affected by the calcination temperature is roughly proportional to the specific surface area of the sample. The highest activity of Y2Zr2O7 calcined at 700 °C for the BD formation from 1,4-BDO is explained by the trade-off relation in the activities for the first-step dehydration of 1,4-BDO to 3B1OL and for the second-step dehydration of 3B1OL to BD. The higher reactivity of 3B1OL than saturated alcohols such as 1-butanol and 2-butanol suggests that the C=C double bond of 3B1OL induces an attractive interaction to anchor the catalyst surface and promotes the dehydration. A probable mechanism for the one-step dehydration of 1,4-BDO to BD was discussed.
Selective production of 1,3-butadiene from 1,3-butanediol over Y2Zr2O7 catalyst
Matsuda, Asami,Matsumura, Yoshitaka,Sato, Satoshi,Yamada, Yasuhiro
, p. 1651 - 1658 (2021/07/21)
The vapor-phase dehydration of 1,3-butanediol (1,3-BDO) to produce 1,3-butadiene (BD) was evaluated over yttrium zirconate, which was prepared through a hydrothermal aging process. 1,3-BDO was initially dehydrated to three unsaturated alcohols, namely 3-buten-2-ol, 3-buten-1-ol, and 2-buten-1-ol, followed by the further dehydration to BD. The catalytic activity of yttrium zirconate was greatly dependent on the calcination temperature. Also, the reaction temperature was one of the important factors to produce BD efficiently. The selectivity to BD was increased with increasing reaction temperature up to 375°C, while coke formation resulted in catalyst deactivation together with by-product formation at higher temperatures. Yttrium zirconate catalyst calcined at 900°C showed a high BD yield of 95% at 375°C and 10 hr on stream.
PROCESS FOR PRODUCING DIENES
-
Page/Page column 30-34, (2021/06/26)
A process for producing a diene, preferably a conjugated diene, more preferably 1,3-butadiene, comprising dehydrating at least one alkenol in the presence of at least one catalytic material comprising at least one acid catalyst based on silica (SiO2) and alumina (AI2O3), preferably a silica-alumina (SiO2-Al2O3), said catalyst having an alumina content (Al2O3) lower than or equal to 12% by weight, preferably between 0.1% by weight and 10% by weight, with respect to the catalyst total weight, said alumina content being referred to the catalyst total weight without binder, and a pore modal diameter between 9 nm and 170 nm, preferably between 10 nm and 150 nm, still more preferably between 12 nm and 120 nm. Preferably, said alkenol can be obtained directly from biosynthetic processes, or by catalytic dehydration processes of at least one diol, preferably a butanediol, more preferably 1,3-butanediol, still more preferably bio-1,3-butanediol, deriving from biosynthetic processes. Preferably, said 1,3-butadiene is bio-1,3-butadiene.
Synthesis of α,β- and β-Unsaturated Acids and Hydroxy Acids by Tandem Oxidation, Epoxidation, and Hydrolysis/Hydrogenation of Bioethanol Derivatives
Faria, Jimmy,Komarneni, Mallik R.,Li, Gengnan,Pham, Tu,Resasco, Daniel E.,Ruiz, Maria P.,Santhanaraj, Daniel
supporting information, p. 7456 - 7460 (2020/03/23)
We report a reaction platform for the synthesis of three different high-value specialty chemical building blocks starting from bio-ethanol, which might have an important impact in the implementation of biorefineries. First, oxidative dehydrogenation of ethanol to acetaldehyde generates an aldehyde-containing stream active for the production of C4 aldehydes via base-catalyzed aldol-condensation. Then, the resulting C4 adduct is selectively converted into crotonic acid via catalytic aerobic oxidation (62 % yield). Using a sequential epoxidation and hydrogenation of crotonic acid leads to 29 % yield of β-hydroxy acid (3-hydroxybutanoic acid). By controlling the pH of the reaction media, it is possible to hydrolyze the oxirane moiety leading to 21 % yield of α,β-dihydroxy acid (2,3-dihydroxybutanoic acid). Crotonic acid, 3-hydroxybutanoic acid, and 2,3-dihydroxybutanoic acid are archetypal specialty chemicals used in the synthesis of polyvinyl-co-unsaturated acids resins, pharmaceutics, and bio-degradable/ -compatible polymers, respectively.