615-57-6Relevant articles and documents
A Practical Procedure for Regioselective Bromination of Anilines
Takahashi, Yusuke,Seki, Masahiko
, p. 1828 - 1832 (2021/04/15)
A highly practical procedure for the preparation of bromoanilines by using copper-catalyzed oxidative bromination has been developed. Treatment of free anilines with readily available NaBr and Na 2S 2O 8in the presence of a catalytic amount of CuSO 4·5H 2O enabled regioselective bromination.
NOVEL TRICYCLIC COMPOUND AS IRAK4 INHIBITOR
-
Paragraph 0046-0048, (2021/10/02)
The present invention relates to a pharmaceutical composition for preventing or treating autoimmune diseases or tumors, containing, as an active ingredient, a tricyclic compound represented by the following Chemical Formula 1 or a pharmaceutically acceptable salt thereof, and a health food composition for preventing or alleviating autoimmune diseases or tumors, containing the tricyclic compound as an active ingredient. The tricyclic compound represented by Chemical Formula 1 of the present invention has an excellent inhibitory activity against IRAK4, and thus can be usefully used for the prevention, treatment, or alleviation of autoimmune diseases or tumors.
Selective Thiocyanation and Aromatic Amination to Achieve Organized Annulation of Enaminone with Thiocyanate
Feng, Xukai,Leng, Xin,Li, Jianli,Li, Yao,Liu, Hua,Liu, Lang,Liu, Ping,She, Mengyao,Zhang, Jun,Zhang, Shengyong,Zheng, Tingting
supporting information, p. 8396 - 8401 (2021/11/17)
A tandem insertion of thiocyanate to enamine was performed for the regioselective synthesis of multisubstituted benzoimidazo[2,1-b]thiazoles. This method was shown to be effective in addressing the issue of isomerization encountered in common strategies. With a change made to the leading group on the aniline fragment of enamine, the reaction achieved different transformations, thus enabling multisubstituted benzo[4,5]imidazo[2,1-b]thiazoles and thiazoles in satisfactory yields.
Visible-light-promoted oxidative halogenation of (hetero)arenes
Jiang, Xuefeng,Li, Yiming,Lu, Lingling
supporting information, p. 5989 - 5994 (2020/10/18)
Organic halides are critical building blocks that participate in various cross-coupling reactions. Furthermore, they widely exist as natural products and artificial molecules in drugs with important physiological activities. Although halogenation has been well studied, to the best of our knowledge, studies focussing on sensitive systems (e.g.aryl amines) have not been reported. Herein, we describe a compatible oxidative halogenation of (hetero)arenes with air as the oxidant and halide ions as halide sources under ambient conditions (visible light, air, aqueous system, room temperature, and normal pressure). Moreover, this protocol is practically feasible for gram-scale synthesis, showing potential for industrial application.
Aryl halide and synthesis method and application thereof
-
Paragraph 0064-0066, (2020/06/02)
The invention discloses a synthesis method of aryl halides (including aryl bromide shown as a formula (2) and aryl iodide shown as a formula (3)). All the systems are carried out in an air atmosphere,visible light is utilized to excite a substrate or a photosensitizer to catalyze the reaction; and in a reaction solvent, when aromatic hydrocarbon shown in the formula (1) and sodium bromide serve as raw materials, aryl bromide shown in the formula (2) is obtained through a reaction under the auxiliary action of an additive (protonic acid); or when aromatic hydrocarbon shown in the formula (1) and sodium iodide are used as raw materials, under the auxiliary action of an additive (protonic acid), aryl iodide shown in the formula (3) is obtained through reaction. The synthesis method has the advantages of cheap and accessible raw materials, simple reaction operation and mild reaction conditions. The method is compatible with the arylamine which is liable to be oxidized. The invention provides a new method for the synthesis of aryl halides, realizes the amplification of basic chemicals aryl halides including aryl bromide shown in the formula (2) and aryl iodide shown in the formula (3),and has wide application prospect and practical value.
A metal-free aerobic oxidative bromination of anilines and aryl ketones with 2-methylpyridinium nitrate as a reusable ionic liquid
Li, Ming-Fang,Wang, Jian,Ke, Yong-Xin,Pan, Song-Cheng,Yin, Hong,Du, Wenting,Li, Jing-Hua
, p. 267 - 270 (2020/01/08)
An aerobic oxidative bromination of anilines and aryl ketones catalyzed by recyclable 2-methylpyridinium nitrate ionic liquid is achieved in water using hydrobromic acid as the bromine source and molecular oxygen as the oxidant. The catalytic system shows good efficiency and atom economy.
AN IMPROVED ONE POT, ONE STEP PROCESS FOR THE HALOGENATION OF AROMATICS USING SOLID ACID CATALYSTS
-
Page/Page column 0063, (2019/04/18)
The present invention disclosed an improved one pot, one step process for halogenation of compound of formula (II) to afford corresponding halogenated compound of formula (I) having improved yield and increased selectivity under very mild conditions.
Sustainable visible light assisted in situ hydrogenation via a magnesium-water system catalyzed by a Pd-g-C3N4 photocatalyst
Sharma, Priti,Sasson, Yoel
supporting information, p. 261 - 268 (2019/01/28)
A non-hazardous and relatively mild protocol was formulated for an effectual hydrogen generation process via a "magnesium-activated water" system with a Pd-g-C3N4 photocatalyst under visible light at room temperature. Water functions photochemically as a hydrogen donor without any external source with the Pd-g-C3N4 photocatalyst. The synthesized Pd-g-C3N4 photocatalyst is highly efficient under visible light for the selective reduction of a wide range of unsaturated derivatives and nitro compounds to afford excellent yields (>99%). The photocatalyst Pd-g-C3N4 could be easily recovered and reused for several runs without any deactivation during the photochemical hydrogen transfer reaction process.
Unusual Chemistry in an Uncatalyzed Bromate-Aniline Oscillator: Ring-Contraction Oxidation of Aniline with Pulsative CO2 Production
Valent, Ivan,Pribus, Marek,Novák, Filip,Plánková, Sylvia,Bla?ko, Jaroslav,Kubinec, Róbert,Almássy, Ambroz,Filo, Juraj,Sigmundová, Ivica,Sebechlebská, Táňa,Lawson, Thuy Bich,Noszticzius, Zoltán
, p. 9669 - 9681 (2019/11/14)
The bromate-aniline oscillatory reaction was discovered 4 decades ago, but neither the detailed mechanism nor the key products or intermediates of the reaction were described. We report herein a detailed study of this reaction, which yielded new insights. We found that oscillatory oxidation of aniline by acidic bromate proceeds, to a significant extent, via a novel reaction pathway with the periodic release of carbon dioxide. Several products were isolated, and their structures, not described so far, were justified on the basis of MS and NMR. One of the main products of the reaction associated with the CO2 release route can be assigned to 2,2-dibromo-5-(phenylimino)cyclopent-3-en-1-one. A number of known compounds produced in the studied reaction, including unexpected brominated 1-phenylpyrroles and 1-phenylmaleimides, were identified by comparison with standards. A mechanism is suggested to explain the appearance of the detected compounds, based on coupling of the anilino radical with the produced 1,4-benzoquinone. We assume that the radical adduct reacts with bromine to form a cyclopropanone intermediate that undergoes a Favorskii-type rearrangement. Further oxidation and bromination steps including decarboxylation lead to the found brominated phenyliminocyclopentenones. The detected derivatives of 1-phenylpyrrole could be produced by a one-electron oxidation of a proposed intermediate 2-phenylamino-5-bromocyclopenta-1,3-dien-1-ol followed by β-scission with the abstraction of carbon monoxide. Such a mechanism is known from the combustion chemistry of cyclopentadiene. The proposed mechanism of this reaction provides a framework for understanding the observed oscillatory kinetics.
Cu-mediated selective bromination of aniline derivatives and preliminary mechanism study
Zhao, Hong-Yi,Yang, Xue-Yan,Lei, Hao,Xin, Minhang,Zhang, San-Qi
, p. 1406 - 1415 (2019/05/01)
A simple and efficient bromination of aniline, aniline derivatives, and analogs have been developed. Forty three examples were given and the highest yield reached was 98%. Different substrates including substituted aniline, pyridin-amine, N-substituted aniline, N,N-disubstituted aniline, N-phenyl-amide, N-phenyl-sulfonamide, and nitrogen-containing heterocycles were all reactive and selectively generated desired bromo-products. The method can be applied to synthesize drug intermediate and quinoxaline derivatives.