94-47-3Relevant articles and documents
Development of a triazinedione-based dehydrative condensing reagent containing 4-(dimethylamino)pyridine as an acyl transfer catalyst
Liu, Jie,Fujita, Hikaru,Kitamura, Masanori,Shimada, Daichi,Kunishima, Munetaka
supporting information, p. 4712 - 4719 (2021/06/11)
A new triazinedione-based reagent, (N,N′-dialkyl)triazinedione-4-(dimethylamino)pyridine (ATD-DMAP) was developed for the operationally simple dehydrative condensation of carboxylic acids. This reagent comprises an ATD core and DMAP as the leaving group, which is liberated into the reaction system to accelerate acyl transfer reactions. Upon adding ATD-DMAP to a mixture of carboxylic acids and alcohols in the presence of an amine base, the corresponding esters were formed rapidly at room temperature. Moreover, dehydrative condensation between carboxylic acids and amines using ATD-DMAP proceeded in high yield.
Size-Driven Inversion of Selectivity in Esterification Reactions: Secondary Beat Primary Alcohols
Mayr, Stefanie,Marin-Luna, Marta,Zipse, Hendrik
, p. 3456 - 3489 (2021/03/01)
Relative rates for the Lewis base-mediated acylation of secondary and primary alcohols carrying large aromatic side chains with anhydrides differing in size and electronic structure have been measured. While primary alcohols react faster than secondary ones in transformations with monosubstituted benzoic anhydride derivatives, relative reactivities are inverted in reactions with sterically biased 1-naphthyl anhydrides. Further analysis of reaction rates shows that increasing substrate size leads to an actual acceleration of the acylation process, the effect being larger for secondary as compared to primary alcohols. Computational results indicate that acylation rates are guided by noncovalent interactions (NCIs) between the catalyst ring system and the DED substituents in the alcohol and anhydride reactants. Thereby stronger NCIs are formed for secondary alcohols than for primary alcohols.
Br?nsted Acid Mediated Nucleophilic Functionalization of Amides through Stable Amide C?N Bond Cleavage; One-Step Synthesis of 2-Substituted Benzothiazoles
Biswas, Srijit,Biswas, Subrata,Duari, Surajit,Elsharif, Asma M.,Maity, Srabani,Roy, Arnab
supporting information, p. 3569 - 3572 (2021/07/22)
We have developed a Br?nsted acid mediated synthetic method to directly cleave stable amide C?N bonds by a variety of alcohol and amine nucleophiles. Reverse reactivity was observed and alcoholysis of amides by activated primary and secondary benzylic, and propargylic alcohols have been achieved instead of the expected nucleophilic substitution of alcohols. As an application, 2-substituted benzothiazole derivatives have been synthesized in one pot employing 2-aminothiophenol as nucleophile.
Spin glass behavior and oxidative catalytic property of Zn2MnO4 from a metathesis driven metastable precursor
Kushwaha, Shreya,Nagarajan, Rajamani
, (2021/06/21)
The reaction of chloride salts of zinc and manganese with NaOH yielded a cubic spinel structured metastable precursor at room temperature, driven mainly by the salt elimination process's energetics. While classical drying processes failed to produce the monophasic oxide, recrystallization under the hydrothermal conditions yielded Zn2MnO4 in nano dimensions. The sample consisted of crystallites with an average 6 nm size and had a lattice dimension of 8.396 (13) ?. The selected area electron diffraction pattern reiterated the occurrence of cubic inverse spinel. The presence of fingerprint (A1g and F2g) modes of an inverse spinel at 663 and 561 cm?1 in the Raman spectrum further supported our finding. The TEM-EDS analysis confirmed the ratio of Zn: Mn as 1.95:1. The sample showed an optical bandgap of 2.54 eV. X-ray photoelectron spectral analysis established the existence of manganese in the IV oxidation state. The presence of Mn (IV) with small amounts of Mn (III) (up to 20%) was confirmed from the electron paramagnetic spectra recorded at room temperature and 77 K. An average oxidation state of 3.85 was deduced from the chemical redox titration experiments. The pseudocapacitive behavior of the sample was evident in cyclic voltammetric experiments. The sample exhibited paramagnetic behavior at 298 K within the applied magnetic field of ±50 kOe. In the temperature-dependent measurements, the zero-field and field cooled data points of Zn2MnO4 diverged at 13 K, suggesting a spin-glass behavior. An effective magnetic moment of 4.31 BM was deduced for the sample. The inverse spinel effectively catalyzed the oxidation of phenol. It facilitated nearly 100% degradation of bisphenol-A to salicylaldehyde and phenylethyl alcohol (as major products) in the presence of H2O2 and at a pH of 9.
Hydrogen-bond-assisted transition-metal-free catalytic transformation of amides to esters
Huang, Changyu,Li, Jinpeng,Wang, Jiaquan,Zheng, Qingshu,Li, Zhenhua,Tu, Tao
, p. 66 - 71 (2020/11/18)
The amide C-N cleavage has drawn a broad interest in synthetic chemistry, biological process and pharmaceutical industry. Transition-metal, luxury ligand or excess base were always vital to the transformation. Here, we developed a transition-metal-free hydrogen-bond-assisted esterification of amides with only catalytic amount of base. The proposed crucial role of hydrogen bonding for assisting esterification was supported by control experiments, density functional theory (DFT) calculations and kinetic studies. Besides broad substrate scopes and excellent functional groups tolerance, this base-catalyzed protocol complements the conventional transition-metal-catalyzed esterification of amides and provides a new pathway to catalytic cleavage of amide C-N bonds for organic synthesis and pharmaceutical industry. [Figure not available: see fulltext.]
Kinetic Analysis as an Optimization Tool for Catalytic Esterification with a Moisture-Tolerant Zirconium Complex
Dalla-Santa, Oscar,Lundberg, Helena,Szabó, Zoltán,Villo, Piret
supporting information, p. 6959 - 6969 (2020/06/27)
This work describes the use of kinetics as a tool for rational optimization of an esterification process with down to equimolar ratios of reagents using a recyclable commercially available zirconocene complex in catalytic amounts. In contrast to previously reported group IV metal-catalyzed esterification protocols, the work presented herein circumvents the use of water scavengers and perfluorooctane sulfonate (PFOS) ligands. Insights into the operating mechanism are presented.
Volatiles from the Psychrotolerant Bacterium Chryseobacterium polytrichastri
Lauterbach, Lukas,Dickschat, Jeroen S.
, p. 3608 - 3617 (2020/09/22)
The flavobacterium Chryseobacterium polytrichastri was investigated for its volatile profile by use of a closed-loop stripping apparatus (CLSA) and subsequent GC-MS analysis. The analyses revealed a rich headspace extract with 71 identified compounds. Compound identification was based on a comparison to library mass spectra for known compounds and on a synthesis of authentic standards for unknowns. Important classes were phenylethyl amides and a series of corresponding imines and pyrroles.
Stannous chloride as a low toxicity and extremely cheap catalyst for regio-/site-selective acylation with unusually broad substrate scope
Dong, Hai,Feng, Guang-Jing,Luo, Tao,Lv, Jian,Yu, Jian-Cheng
supporting information, p. 6936 - 6942 (2020/11/09)
This work reports stannous chloride (SnCl2)-catalyzed regio-/site-selective acylation with unusually broad substrate scope. In addition to 1,2- and 1,3-diols and glycosides containing cis-vicinal diol, the substrate scope also includes glycosides without cis-vicinal diol. For such a substrate scope, usually, only methods using stoichiometric amounts of organotin reagents can lead to the same protection pattern with high selectivities and highly isolated yields (84-97% in most cases). Therefore, SnCl2, as a low toxicity and extremely cheap reagent, should be the best catalyst for regio-/site-selective acylation compared with any previously reported reagents. This journal is
Catalytic conversion of ketones to esters: Via C(O)-C bond cleavage under transition-metal free conditions
Subaramanian, Murugan,Ramar, Palmurukan M.,Rana, Jagannath,Gupta, Virendra Kumar,Balaraman, Ekambaram
supporting information, p. 8143 - 8146 (2020/09/09)
The catalytic conversion of ketones to esters via C(O)-C bond cleavage under transition-metal free conditions is reported. This catalytic process proceeds under solvent-free conditions and offers an easy operational procedure, broad substrate scope with excellent selectivity, and reaction scalability. This journal is
Internal Catalysis in Covalent Adaptable Networks: Phthalate Monoester Transesterification As a Versatile Dynamic Cross-Linking Chemistry
Delahaye, Maarten,Winne, Johan M.,Du Prez, Filip E.
supporting information, p. 15277 - 15287 (2019/10/19)
Covalent adaptable networks (CANs) often make use of highly active external catalysts to provide swift exchange of the dynamic chemical bonds. Alternatively, milder species can act as internal catalysts when covalently attached to the matrix and in close proximity to the dynamic bonds. In this context, we introduce the dynamic exchange of phthalate monoesters as a novel chemistry platform for covalent adaptable networks. A low-molecular-weight (MW) model study shows that these monoesters undergo fast transesterification via a dissociative mechanism, caused by internal catalysis of the free carboxylic acid, which reversibly forms an activated phthalic anhydride intermediate. Using this dynamic chemistry, a wide series of CANs with a broad range of properties have been prepared by simply curing a mixture of diols and triols with bifunctional phthalic anhydrides. The dynamic nature of the networks was confirmed via recycling experiments for multiple cycles and via stress relaxation using rheology. The networks proved to be resistant to deformation but showed a marked temperature response in their rheological behavior, related to the swift exchange reactions that have a high activation energy (120 kJ/mol). While densely cross-linked and hydrolytically stable polyester networks with low soluble fractions can be obtained, we found that, by swelling the networks in a hot solvent, a gel-to-sol transition happened, which resulted in the full dissolution of the network.