107-16-4Relevant articles and documents
EQUILIBRIUM OF α-AMINOACETONITRILE FORMATION FROM FORMALDEHYDE, HYDROGEN CYANIDE AND AMMONIA IN AQUEOUS SOLUTION: INDUSTRIAL AND PREBIOTIC SIGNIFICANCE
Moutou, G.,Taillades, J.,Benefice-Malouet, S.,Commeyras, A.,Messina, G.,Mansani, R.
, p. 721 - 730 (1995)
The equilibrium constant, Kan(H2CO), for the formation of α-aminoacetonitrile from formaldehyde, ammonia and hydrogen cyanide was evaluated at 25 deg C.A first estimation of Kan(H2CO) was obtained from extrathermodynamic relationships of the type log K' vs Σ?*.The final value was then obtained from a comparison of the experimental and calculated pH dependences of α-hydroxy- and α-aminoacetonitrile concentrations.From these results, it appears that, after equilibrium, the ratio between the concentrations of the two precursors glycine and hydroxyethanoic acid, is a linear function of the concentration of free ammonia, i.e. /=21 at 25 deg C.
Chemoenzymatic synthesis of glycolic acid
Panova, Anna,Mersinger, Lawrence J.,Liu, Qiang,Foo, Thomas,Roe, D. Christopher,Spillan, William L.,Sigmund, Amy E.,Ben-Bassat, Arie,Winona Wagner,O'Keefe, Daniel P.,Wu, Shijun,Perrillo, Kelly L.,Payne, Mark S.,Breske, Stephen T.,Gallagher, F. Glenn,Dicosimo, Robert
, p. 1462 - 1474 (2007)
A chemoenzymatic process for the production of high-purity glycolic acid has been demonstrated, starting with the reaction of formaldehyde and hydrogen cyanide to produce glycolonitrile in > 99 % yield and purity. The resulting aqueous glycolonitrile was used without further purification in a subsequent biocatalytic conversion of glycolonitrile to ammonium glycolate. A high-activity biocatalyst based on an Acidovorax facilis 72W nitrilase was developed, where protein engineering and optimized protein expression in an E. coli transformant host were used to improve microbial nitrilase specific activity by 33-fold compared to the wild-type strain. A biocatalyst productivity of > 1000 g glycolic acid/g dry cell weight was achieved using a glutaraldehyde/ polyethylenimine cross-linked carrageenan-immobilized E. coli MG1655 transformant expressing the A. facilis 72W nitrilase mutant, where 3.2M ammonium glycolate was produced in consecutive batch reactions with biocatalyst recycle, or in a continuous stirred-tank reactor. Direct conversion of the unpurified ammonium glycolate product solution to high-purity aqueous glycolic acid was accomplished by fixed-bed ion exchange over a strong acid cation resin.
Matrix Reactions of Oxygen Atoms with CH3CN. Infrared Spectra of HOCH2CN and CH3CNO
Mielke, Zofia,Hawkins, Michael,Andrews, Lester
, p. 558 - 564 (1989)
Reactions of oxygen atoms and acetonitrile have been investigated in solid argon at 14-17 K.Primary photoproducts include hydroxyacetonitrile (HOCH2CN) and acetonitrile N-oxide (CH3CNO).Hydroxyacetonitrile forms hydrogen-bonded complexes with acetonitrile and acetonitrile N-oxide as the secondary products.Acetonitrile N-oxide is suggested to be formed by a simple bimolecular addition reaction of atomic oxygen with the nitrile nitrogen.The participation of O(1D) atoms is considered to increase the yield of hydroxyacetonitrile as compared to acetonitrile N-oxide via H-atom abstraction or insertion reactions.The spectral characteristics of hydroxyacetonitrile, acetonitrile N-oxide, and hydrogen-bonded hydroxyacetonitrile-acetonitrile complex isolated in argon matrices are given.
Chloraminometric Reactions: Kinetics and Mechanisms of Oxidations of Amino-acids by Sodium N-Chlorotoluene-p-sulphonamide in Acid and Alkaline Media
Gowda, Basavalinganadoddy Thimme,Mahadevappa, Darndinasivara S.
, p. 323 - 334 (1983)
Available data on the kinetics of oxidations of amino-acids by sodium N-chloro toluene-p-sulphonamide (chloramine T) in acid and alkaline media have been critically examined.General mechanisms have been proposed for both acid and alkaline medium oxidations.The oxidation process in acid media has been shown to proceed via two paths, one involving the direct interaction of N-chlorotoluene-p-sulphonamide (RNHCl) with the neutral amino-acid in a slow step leading to the formation of the monochloroamino-acid which subsequently interacts with another molecule of RNHCl, in a fast step, to give the NN-dichloroamino-acid which in turn undergoes molecular rearrangement and elimination to yield the products, and the other involving the interaction of Cl2 or H2OCl(1+), produced from the disproportionation of RNHCl in the presence or absence of Cl(1-), with the substrate to give the products.In the alkaline medium mechanisms involving the interaction of RNHCl, HOCl, RNCl(1-), and OCl(1-) with the substrate are proposed.The mechanisms proposed and the derived rate lows are consistent with the observed kinetics.The rate constants predicted by the derived rate laws, as the concentrations of substrate and Cl(1-) ion change, are in excellent agreement with the observed rate constants thus further verifying the rate laws and hence the proposed mechanisms.
Synthesis of α-aminonitriles using aliphatic nitriles, α-amino acids, and hexacyanoferrate as universally applicable non-toxic cyanide sources
Nauth, Alexander M.,Konrad, Tim,Papadopulu, Zaneta,Vierengel, Nina,Lipp, Benjamin,Opatz, Till
, p. 4217 - 4223 (2018)
In cyanation reactions, the cyanide source is often directly added to the reaction mixture, which restricts the choice of conditions. The spatial separation of cyanide release and consumption offers higher flexibility instead. Such a setting was used for the cyanation of iminium ions with a variety of different easy-to-handle HCN sources such as hexacyanoferrate, acetonitrile or α-amino acids. The latter substrates were first converted to their corresponding nitriles through oxidative decarboxylation. While glycine directly furnishes HCN in the oxidation step, the aliphatic nitriles derived from α-substituted amino acids can be further converted into the corresponding cyanohydrins in an oxidative C-H functionalization. Mn(OAc)2 was found to catalyze the efficient release of HCN from these cyanohydrins or from acetone cyanohydrin under acidic conditions and, in combination with the two previous transformations, permits the use of protein biomass as a non-toxic source of HCN.
Bio-based nitriles from the heterogeneously catalyzed oxidative decarboxylation of amino acids
Claes, Laurens,Matthessen, Roman,Rombouts, Ine,Stassen, Ivo,De Baerdemaeker, Trees,Depla, Diederik,Delcour, Jan A.,Lagrain, Bert,De Vos, Dirk E.
, p. 345 - 352 (2015)
The oxidative decarboxylation of amino acids to nitriles was achieved in aqueous solution by in situ halide oxidation using catalytic amounts of tungstate exchanged on a [Ni,Al] layered double hydroxide (LDH), NH4Br, and H2O2 as the terminal oxidant. Both halide oxidation and oxidative decarboxylation were facilitated by proximity effects between the reactants and the LDH catalyst. A wide range of amino acids was converted with high yields, often > 90%. The nitrile selectivity was excellent, and the system is compatible with amide, alcohol, and in particular carboxylic acid, amine, and guanidine functional groups after appropriate neutralization. This heterogeneous catalytic system was applied successfully to convert a pro-tein-rich byproduct from the starch industry into useful biobased N-containing chemicals.
Reactions with Betaines, XXIV: Reactions of Trimethylammonium Acetic Acid Betaine with Reactive Halides
Ziegler, Erich,Wittmann, Helga,Sterk, Heinz
, p. 907 - 912 (1989)
Diethyl bromomalonate and bromoacetonitrile, respectively, react with trimethylammonium acetic acid betaine in ethanol to give diethyl tartronate and glycolic acid nitrile, respectively.By analogy, ethyl α-chloroacetonate and ethyl bromopyruvate yield the respective hydroxy derivatives which were identified by their osazones 2 and 3.Under the same experimental conditions, mesoxalic acid and its dimethyl ester, respectively, are formed from dibromo malonic acid and its dimethyl ester and were characterized by their known hydrazones 8 and 9. - Keywords: Trimethylammonium acetic acid betaine; Diethyl tartronate; 1-Carbethoxy-2-methyl-(2,4-dinitrophenyl) osazone; 1-Carbetoxy-(2,4-dinitrophenyl) osazone; Glycolic acid nitrile.
INHIBITORS OF HUMAN HERPESVIRUSES
-
Page/Page column 86; 130-132, (2021/09/11)
Provided herein are compounds, compositions and methods for inhibition of herpesviruses. In some cases, the subject compounds inhibit a herpesvirus in a cell. Also provided are compounds, compositions and methods for treating a herpesvirus in an individual. In some cases, the methods include administering to an individual a therapeutically effective amount of a subject compound to treat the individual for the herpesvirus. In certain embodiments, the compounds disclosed herein are cytomegalovirus (CMV) inhibitors. In certain embodiments, the compounds disclosed herein are human cytomegalovirus (CMV) inhibitors.
Preparation method of 2-hydroxy acid ester
-
Paragraph 0031-0032, (2017/04/11)
The invention relates to a preparation method of 2-hydroxy acid ester and belongs to the technical field of organic synthesis. According to the preparation method of 2-hydroxy acid ester, 2-hydroxy alkyl cyanogens is taken as a raw material to be added to a reaction solution formed by hydrogen chloride, alcohol and water, and after reaction, 2-hydroxy acid ester is obtained. According to the preparation method of 2-hydroxy acid ester, use of a large amount of nonpolar solvent is not needed, and a target product can be obtained by a one-pot method, thus lowering production cost, improving production efficiency and the purify of the target product, and having energy-saving and environment-friendly effects.
Process for synthesizing ethylenediamine-N-N'-disodium oxalic acid
-
Paragraph 0060-0062, (2017/06/19)
The invention discloses a process for synthesizing ethylenediamine-N-N'-disodium oxalic acid, and belongs to the field of technologies for synthesizing chemical compounds. The process includes carrying out reaction on glycolonitrile aqueous solution and ethylenediamine to obtain an intermediate ethylenediamine-N-N'-diacetonitrile; carrying out alkaline hydrolysis on the intermediate and dehydrating and drying the intermediate to obtain the ethylenediamine-N-N'-disodium oxalic acid. The intermediate and liquid caustic soda are mixed with each other to obtain mixtures when alkaline hydrolysis is carried out on the intermediate, the mixtures are heated until the temperature of the mixtures reaches 60-65 DEG C at first, then heat is preserved for 2-2.5 h, the mixtures are further heated until the temperature of the mixtures reaches 110-115 DEG C, and reflex heat preservation is carried out for 2-2.5 h to obtain alkaline hydrolysis liquid. The process has the advantages that the process is environmentally friendly, ammonia gas which is a byproduct can be absorbed by water to obtain ammonia water, and accordingly generation of waste gas, wastewater and industrial residues can be prevented; the alkaline hydrolysis temperatures are controlled, accordingly, generation of impurities such as disodium ethylenediamine nitrilotriacetic acid, ethylenediamine-sodium acetate and ethylenediamine tetraacetic acid disodium salt can be effectively controlled, and the ethylenediamine-N-N'-disodium oxalic acid which is a product is high in purity.