17422-32-1Relevant articles and documents
Metal–Organic Layers Hierarchically Integrate Three Synergistic Active Sites for Tandem Catalysis
Quan, Yangjian,Lan, Guangxu,Shi, Wenjie,Xu, Ziwan,Fan, Yingjie,You, Eric,Jiang, Xiaomin,Wang, Cheng,Lin, Wenbin
supporting information, p. 3115 - 3120 (2020/12/09)
We report the design of a bifunctional metal–organic layer (MOL), Hf12-Ru-Co, composed of [Ru(DBB)(bpy)2]2+ [DBB-Ru, DBB=4,4′-di(4-benzoato)-2,2′-bipyridine; bpy=2,2′-bipyridine] connecting ligand as a photosensitizer and Co(dmgH)2(PPA)Cl (PPA-Co, dmgH=dimethylglyoxime; PPA=4-pyridinepropionic acid) on the Hf12 secondary building unit (SBU) as a hydrogen-transfer catalyst. Hf12-Ru-Co efficiently catalyzed acceptorless dehydrogenation of indolines and tetrahydroquinolines to afford indoles and quinolones. We extended this strategy to prepare Hf12-Ru-Co-OTf MOL with a [Ru(DBB)(bpy)2]2+ photosensitizer and Hf12 SBU capped with triflate as strong Lewis acids and PPA-Co as a hydrogen transfer catalyst. With three synergistic active sites, Hf12-Ru-Co-OTf competently catalyzed dehydrogenative tandem transformations of indolines with alkenes or aldehydes to afford 3-alkylindoles and bisindolylmethanes with turnover numbers of up to 500 and 460, respectively, illustrating the potential use of MOLs in constructing novel multifunctional heterogeneous catalysts.
Highly Ordered Mesoporous Cobalt Oxide as Heterogeneous Catalyst for Aerobic Oxidative Aromatization of N-Heterocycles
Cao, Yue,Wu, Yong,Zhang, Yuanteng,Zhou, Jing,Xiao, Wei,Gu, Dong
, p. 3679 - 3686 (2021/06/18)
N-heterocycles are key structures for many pharmaceutical intermediates. The synthesis of such units normally is conducted under homogeneous catalytic conditions. Among all methods, aerobic oxidative aromatization is one of the most effective. However, in homogeneous conditions, catalysts are difficult to be recycled. Herein, we report a heterogeneous catalytic strategy with a mesoporous cobalt oxide as catalyst. The developed protocol shows a broad applicability for the synthesis of N-heterocycles (32 examples, up to 99 % yield), and the catalyst presents high turnover numbers (7.41) in the absence of any additives. Such a heterogenous approach can be easily scaled up. Furthermore, the catalyst can be recycled by simply filtration and be reused for at least six times without obvious deactivation. Comparative studies reveal that the high surface area of mesoporous cobalt oxide plays an important role on the catalytic reactivity. The outstanding recycling capacity makes the catalyst industrially practical and sustainable for the synthesis of diverse N-heterocycles.
Monoamine Oxidase (MAO-N) Biocatalyzed Synthesis of Indoles from Indolines Prepared via Photocatalytic Cyclization/Arylative Dearomatization
Black, Gary W.,Brancale, Andrea,Castagnolo, Daniele,Colonna, Serena,Ferla, Salvatore,Masci, Domiziana,Turner, Nicholas J.,Varricchio, Carmine,Zhao, Fei
, p. 6414 - 6421 (2020/07/09)
The biocatalytic aromatization of indolines into indole derivatives exploiting monoamine oxidase (MAO-N) enzymes is presented. Indoline substrates were prepared via photocatalytic cyclization of arylaniline precursors or via arylative dearomatization of unsubstituted indoles and in turn chemoselectively aromatized by the MAO-N D11 whole cell biocatalyst. Computational docking studies of the indoline substrates in the MAO-N D11 catalytic site allowed for the rationalization of the biocatalytic mechanism and experimental results of the biotransformation. This methodology represents an efficient example of biocatalytic synthesis of indole derivatives and offers a facile approach to access these aromatic heterocycles under mild reaction conditions.
A NaH-promoted N-detosylation reaction of diverse p-toluenesulfonamides
Sun, Wanwan,Chen, Xiaobei,Hu, Ying,Geng, Huihui,Jiang, Yuanrui,Zhou, Yuxin,Zhu, Wenjing,Hu, Min,Hu, Haohua,Wang, Xingyi,Wang, Xinli,Zhang, Shilei,Hu, Yanwei
supporting information, (2020/10/05)
A NaH-mediated detosylation reaction of various Ts-protected indoles, azaheterocycles, anilines and dibenzylamine was reported. The method features cheap reagent, convenient operations, mild reaction conditions and broad substrate scope. Moreover, this study revealed that the loading of NaH in tosylation reactions of nitrogen-containing compounds with NaH as a base in DMA or DMF should be controlled due to the possibility of adverse detosylation.
Electron Transfer Photoredox Catalysis: Development of a Photoactivated Reductive Desulfonylation of an Aza-Heteroaromatic Ring
Qiang-Liu,Liu, Yu-Xiu,Song, Hong-Jian,Wang, Qing-Min
supporting information, p. 3110 - 3115 (2020/07/04)
Herein, we report a protocol for desulfonylation of aza-heteroaromatic rings via photoinduced electron transfer and hydrogen atom transfer. This general protocol has a wide substrate range and moderate to good yields. The utility of the method was demonstrated by the chemoselective desulfonylation of a molecule containing both an aliphatic and an aromatic sulfonamide. (Figure presented.).
Electrosynthesis of Dihydropyrano[4,3-b]indoles Based on a Double Oxidative [3+3] Cycloaddition
Choi, Subin,Park, Cheol-Min,Park, Jinhwi,Sim, Jeongwoo,Yu, Eunsoo
supporting information, p. 11886 - 11891 (2020/05/22)
Oxidative [3+3] cycloadditions offer an efficient route for six-membered-ring formation. This approach has been realized based on an electrochemical oxidative coupling of indoles/enamines with active methylene compounds followed by tandem 6π-electrocyclization leading to the synthesis of dihydropyrano[4,3-b]indoles and 2,3-dihydrofurans. The radical–radical cross-coupling of the radical species generated by anodic oxidation combined with the cathodic generation of the base from O2 allows for mild reaction conditions for the synthesis of structurally complex heterocycles.
Efficient acceptorless photo-dehydrogenation of alcohols and: N -heterocycles with binuclear platinum(ii) diphosphite complexes
Zhong, Jian-Ji,To, Wai-Pong,Liu, Yungen,Lu, Wei,Che, Chi-Ming
, p. 4883 - 4889 (2019/05/16)
Although photoredox catalysis employing Ru(ii) and Ir(iii) complexes as photocatalysts has emerged as a versatile tool for oxidative C-H functionalization under mild conditions, the need for additional reagents acting as electron donor/scavenger for completing the catalytic cycle undermines the practicability of this approach. Herein we demonstrate that photo-induced oxidative C-H functionalization can be catalysed with high product yields under oxygen-free and acceptorless conditions via inner-sphere atom abstraction by binuclear platinum(ii) diphosphite complexes. Both alcohols (51 examples), particularly the aliphatic ones, and saturated N-heterocycles (24 examples) can be efficiently dehydrogenated under light irradiation at room temperature. Regeneration of the photocatalyst by means of reductive elimination of dihydrogen from the in situ formed platinum(iii)-hydride species represents an alternative paradigm to the current approach in photoredox catalysis.
Gold(III)-Catalyzed Decarboxylative C3-Benzylation of Indole-3-carboxylic Acids with Benzylic Alcohols in Water
Hikawa, Hidemasa,Kotaki, Fumiya,Kikkawa, Shoko,Azumaya, Isao
supporting information, p. 1972 - 1979 (2019/05/16)
A strategy for the gold(III)-catalyzed decarboxylative coupling reaction of indole-3-carboxylic acids with benzylic alcohols has been developed. This cascade reaction is devised as a straightforward and efficient synthetic route for 3-benzylindoles in moderate to excellent yields (50-93%). A Hammett study of the protodecarboxylation gives a negative ρ value, suggesting that there is a buildup of positive charge on the indole ring in the transition state. Furthermore, comparison of initial rates in H2O and in D2O reveals an observed kinetic solvent isotope effect (KSIE = 2.7). This simple protocol, which affords the desired products with CO2 and water as the coproducts, can be achieved under mild conditions without the need for base or other additives in water.
Hydrophobic Metal Halide Perovskites for Visible-Light Photoredox C?C Bond Cleavage and Dehydrogenation Catalysis
Hong, Zonghan,Chong, Wee Kiang,Ng, Andrew Yun Ru,Li, Mingjie,Ganguly, Rakesh,Sum, Tze Chien,Soo, Han Sen
, p. 3456 - 3460 (2019/02/13)
Two-dimensional lead and tin halide perovskites were prepared by intercalating the long alkyl group 1-hexadecylammonium (HDA) between the inorganic layers. We observed visible-light absorption, narrow-band photoluminescence, and nanosecond photoexcited lifetimes in these perovskites. Owing to their hydrophobicity and stability even in humid air, we applied these perovskites in the decarboxylation and dehydrogenation of indoline-2-carboxylic acids. (HDA)2PbI4 or (HDA)2SnI4 were investigated as photoredox catalysts for these reactions, and quantitative conversion and high yields were observed with the former.
Pd-Catalyzed Dehydrogenative Oxidation of Alcohols to Functionalized Molecules
Mori, Takamichi,Ishii, Chihiro,Kimura, Masanari
supporting information, p. 1709 - 1717 (2019/09/04)
A dehydrogenative oxidation reaction of primary alcohols to aldehydes catalyzed by a simple Pd/Xantphos catalytic system was developed under an argon or nitrogen atmosphere without oxidizing agents or hydrogen acceptors. The reaction product could be easily changed: under aerobic conditions, esters were obtained in aprotic solvents, whereas the corresponding carboxylic acids were produced in aqueous media. These oxidizing processes were applicable to the efficient synthesis of useful nitrogen-containing heterocyclic compounds such as indole, quinazoline, and benzimidazole via intramolecular versions of this reaction from amino alcohols.