Welcome to LookChem.com Sign In|Join Free

CAS

  • or
N-butylbenzamide is a chemical with a specific purpose. Lookchem provides you with multiple data and supplier information of this chemical.

2782-40-3 Suppliers

Post Buying Request

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier
  • 2782-40-3 Structure
  • Basic information

    1. Product Name: N-butylbenzamide
    2. Synonyms: N-butylbenzamide;Butylbenzamide
    3. CAS NO:2782-40-3
    4. Molecular Formula: C11H15NO
    5. Molecular Weight: 177.2429
    6. EINECS: 220-485-4
    7. Product Categories: N/A
    8. Mol File: 2782-40-3.mol
  • Chemical Properties

    1. Melting Point: N/A
    2. Boiling Point: 340.4°Cat760mmHg
    3. Flash Point: 201.6°C
    4. Appearance: /
    5. Density: 0.988g/cm3
    6. Vapor Pressure: 8.62E-05mmHg at 25°C
    7. Refractive Index: 1.511
    8. Storage Temp.: N/A
    9. Solubility: N/A
    10. CAS DataBase Reference: N-butylbenzamide(CAS DataBase Reference)
    11. NIST Chemistry Reference: N-butylbenzamide(2782-40-3)
    12. EPA Substance Registry System: N-butylbenzamide(2782-40-3)
  • Safety Data

    1. Hazard Codes: N/A
    2. Statements: N/A
    3. Safety Statements: N/A
    4. WGK Germany:
    5. RTECS:
    6. HazardClass: N/A
    7. PackingGroup: N/A
    8. Hazardous Substances Data: 2782-40-3(Hazardous Substances Data)

2782-40-3 Usage

Synthesis Reference(s)

Tetrahedron Letters, 35, p. 3313, 1994 DOI: 10.1016/S0040-4039(00)76894-8

Check Digit Verification of cas no

The CAS Registry Mumber 2782-40-3 includes 7 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 4 digits, 2,7,8 and 2 respectively; the second part has 2 digits, 4 and 0 respectively.
Calculate Digit Verification of CAS Registry Number 2782-40:
(6*2)+(5*7)+(4*8)+(3*2)+(2*4)+(1*0)=93
93 % 10 = 3
So 2782-40-3 is a valid CAS Registry Number.
InChI:InChI=1/C11H15NO/c1-2-3-9-12-11(13)10-7-5-4-6-8-10/h4-8H,2-3,9H2,1H3,(H,12,13)

2782-40-3SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 17, 2017

Revision Date: Aug 17, 2017

1.Identification

1.1 GHS Product identifier

Product name N-butylbenzamide

1.2 Other means of identification

Product number -
Other names EINECS 220-485-4

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:2782-40-3 SDS

2782-40-3Relevant articles and documents

CuO-decorated magnetite-reduced graphene oxide: a robust and promising heterogeneous catalyst for the oxidative amidation of methylarenes in waterviabenzylic sp3C-H activation

Ebrahimi, Edris,Khalafi-Nezhad, Ali,Khalili, Dariush,Rousta, Marzieh

, p. 20007 - 20020 (2021/11/12)

A magnetite-reduced graphene oxide-supported CuO nanocomposite (rGO/Fe3O4-CuO) was preparedviaa facile chemical method and characterized by Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), UV-vis spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS), Brunauer-Emmett-Teller (BET) analysis, vibrating-sample magnetometry (VSM), and thermogravimetric (TG) analysis. The catalytic activity of the rGO/Fe3O4-CuO nanocomposite was probed in the direct oxidative amidation reaction of methylarenes with free amines. Various aromatic and aliphatic amides were prepared efficiently at room temperature from cheap raw chemicals usingtert-butyl hydroperoxide (TBHP) as a “green” oxidant and low-toxicity TBAI in water. This method combines the oxidation of methylarenes and amide bond formation into a single operation. Moreover, the synthesized nanocomposites can be separated from the reaction mixtures using an external magnet and reused in six consecutive runs without a noticeable decrease in the catalytic activity.

Z-Selective Fluoroalkenylation of (Hetero)Aromatic Systems by Iodonium Reagents in Palladium-Catalyzed Directed C?H Activation

Bényei, Attila,Domján, Attila,Egyed, Orsolya,Gonda, Zsombor,Novák, Zoltán,Sályi, Gerg?,Tóth, Balázs L.

supporting information, (2021/11/09)

The direct and catalytic incorporation of fluorine containing molecular motifs into organic compounds resulting high-value added chemicals represents a rapidly evolving part of synthetic methodologies, thus this area is in the focus of pharmaceutical and agrochemical research. Herein we report a stereoselective procedure for direct fluorovinylation of aromatic and heteroaromatic scaffolds. This methodology development has been realized by palladium-catalyzed ortho C?H activation reaction of aniline derivatives featuring the regioselectivity via directing groups such as secondary of tertiary amides, ureas or ketones. The application of non-symmetrical aryl(fluoroalkenyl)-iodonium salts as fluoroalkenylating agents allowed mild reaction conditions in general for this transformation. The scope and limitations have been thoroughly investigated and the feasibility has been demonstrated by more than 50 examples.

UV-Light-Induced N-Acylation of Amines with α-Diketones

Xu, Zhihui,Yang, Tianbao,Tang, Niu,Ou, Yifeng,Yin, Shuang-Feng,Kambe, Nobuaki,Qiu, Renhua

supporting information, p. 5329 - 5333 (2021/07/21)

Herein, we develop a mild method for N-acylation of primary and secondary amines with α-diketones induced by ultraviolet (UV) light. Forty-six examples with various functional groups are explored at room temperature with irradiation by three 26 W UV lamps (350-380 nm). The yield reaches 97%. The gram scale experiment product yield is 76%. Moreover, this system can be applied to the synthesis of several amino acid derivatives. Mechanistic studies show that benzoin is generated in situ from benzil under UV irradiation.

Direct Amidation of Esters by Ball Milling**

Barreteau, Fabien,Battilocchio, Claudio,Browne, Duncan L.,Godineau, Edouard,Leitch, Jamie A.,Nicholson, William I.,Payne, Riley,Priestley, Ian

supporting information, p. 21868 - 21874 (2021/09/02)

The direct mechanochemical amidation of esters by ball milling is described. The operationally simple procedure requires an ester, an amine, and substoichiometric KOtBu and was used to prepare a large and diverse library of 78 amide structures with modest to excellent efficiency. Heteroaromatic and heterocyclic components are specifically shown to be amenable to this mechanochemical protocol. This direct synthesis platform has been applied to the synthesis of active pharmaceutical ingredients (APIs) and agrochemicals as well as the gram-scale synthesis of an active pharmaceutical, all in the absence of a reaction solvent.

NaOTs-promoted transition metal-free C-N bond cleavage to form C-X (X = N, O, S) bonds

Chen, Wei,Liu, Sicheng,Liu, Tingting,Majeed, Irfan,Ye, Xiaojing,Zeng, Zhuo,Zhang, Yuqi,Zhu, Yulin

, p. 8566 - 8571 (2021/10/20)

Multifunctional transformation of amide C-N bond cleavage is reported. The protocol applies to benzamide, thioamide, alcohols, and mercaptan under similar reaction conditions catalyzed by NaOTs. It is noteworthy that NaOTs can not only be recycled and reused for up to three cycles without significant loss in catalytic activity, but also catalyze gram-grade reactions. This study provides a novel solution with mild conditions and a simple procedure for transformation of multiple amides.

Fluorinated solvent-assisted photocatalytic aerobic oxidative amidation of alcoholsviavisible-light-mediated HKUST-1/Cs-POMoW catalysis

Azarkhosh, Zahra,Heydari, Akbar,Karimi, Meghdad,Mahjoub, Alireza,Mohebali, Haleh,Sadeghi, Samira,Safarifard, Vahid

supporting information, p. 14024 - 14035 (2021/08/16)

Considering the irreplaceable importance of photocatalytic functionalization reactions and the widespread attention paid to the use of metal-organic frameworks, especially their modified variants, for this purpose in recent years, different types of HKUST-1/POMoW composites were prepared through the immobilization of a series of Keggin-type polyoxometalates (POMs; POW = H3PW12O40, POMo = H3PMo12O40, and POMoW = H3PMo6W6O40) on HKUST-1 as a metal-organic framework (HKUST-1; Cu3(1,3,5-benzenetricarboxilicacid)2). Then, to produce HKUST-1/Cs-POM, the substitution of H+cations with Cs+ones as counter cations was carried out. The prepared composites were fully characterized with the PXRD (powder X-ray diffraction), FT-IR (Fourier transform infrared spectroscopy), BET and BJH (sorption of N2), TGA (thermo-gravimetric analysis), SEM (scanning electron microscopy), EDX (energy dispersive X-ray), TEM (transmission electron microscopy), UV-vis DRS (diffuse reflectance UV-vis spectroscopy), photoluminescence (PL) spectroscopy and ICP-AES (inductively coupled plasma atomic emission spectroscopy) techniques. The great importance?of the amide functional group and the attractiveness of photocatalytic oxidative functionalization?reactions led us to study the formation of this functional group using the prepared catalytic system in line with our previous research in this field. The HKUST-1/Cs-POMoW composite showed a raised photocatalytic performance compared to the discrete components, HKUST-1 and Cs-POMs, in aerobic oxidative amidation of alcohols under illumination with visible light, owing to the presence of catalytically active Cs-POMs deposited on the MOF particles. Besides, the combination of composite components mitigated the recombination rate of the electron-hole pairs, raising its photocatalytic activity. The attractiveness of fluorine solvents for oxidation reactions has led to the study of their role in the efficiency of oxidative amidation of alcohols and their significant effect on the efficiency of the process has been confirmed. The Cu-MOF/POM catalyst showed excellent stability during the reaction, and no significant decrease in its ability was observed during five consecutive cycles.

Pd-Catalyst Containing a Hemilabile P,C-Hybrid Ligand in Amino Dicarbonylation of Aryl Halides for Synthesis of α-Ketoamides

Yang, Shu-Qing,Yao, Yin-Qing,Chen, Xiao-Chao,Lu, Yong,Zhao, Xiao-Li,Liu, Ye

, p. 1032 - 1041 (2021/05/07)

The amino dicarbonylation of aryl halides affording α-ketoamides with Pd catalysts is highly dependent on the stereoelectronic properties of the involved ligands. Ionic diphosphine ligand L4 can serve as precursor of a hemilabile P,C (phosphine, carbene)-hybrid ligand to form a stable Pd(II)-complex, Pd-L4. In contrast, analogues L1-L3 with a similar 1-(thiophen-3-yl)-benzimidazolyl skeleton behave as typical (mono/di)phosphines. The catalytic system resulting from the complexation of PdCl2(MeCN)2 and L4 exhibits good catalytic performance in terms of aryl iodides conversion (81-95%) and α-ketoamide selectivity (80-91%), as well as the available recyclability in the RTIL of [Bpy]BF4. The in situ FT-IR analysis reveals that the PdCl2(MeCN)2-L4 catalytic system favors the amino dicarbonylation toward α-ketoamides according to the proposed mechanism of cycle I, which involves two independent CO-insertion steps.

Sustainable triazine-based dehydro-condensation agents for amide synthesis

Sole, Roberto,Gatto, Vanessa,Conca, Silvia,Bardella, Noemi,Morandini, Andrea,Beghetto, Valentina

, (2021/04/26)

Conventional methods employed today for the synthesis of amides often lack of economic and environmental sustainability. Triazine-derived quaternary ammonium salts, e.g., 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium chloride (DMTMM(Cl)), emerged as promising dehydro-condensation agents for amide synthesis, although suffering of limited stability and high costs. In the present work, a simple protocol for the synthesis of amides mediated by 2-chloro-4,6-dimethoxy-1,3,5-triazine (CDMT) and a tert-amine has been described and data are compared to DMTMM(Cl) and other CDMT-derived quaternary ammonium salts (DMT-Ams(X), X: Cl? or ClO4?). Different tert-amines (Ams) were tested for the synthesis of various DMT-Ams(Cl), but only DMTMM(Cl) could be isolated and employed for dehydro-condensation reactions, while all CDMT/tert-amine systems tested were efficient as dehydro-condensation agents. Interestingly, in best reaction conditions, CDMT and 1,4-dimethylpiperazine gave N-phenethyl benzamide in 93% yield in 15 min, with up to half the amount of tert-amine consumption. The efficiency of CDMT/tert-amine was further compared to more stable triazine quaternary ammonium salts having a perchlorate counter anion (DMT-Ams(ClO4)). Overall CDMT/tert-amine systems appear to be a viable and more economical alternative to most dehydro-condensation agents employed today.

A CO2-Catalyzed Transamidation Reaction

Yang, Yang,Liu, Jian,Kamounah, Fadhil S.,Ciancaleoni, Gianluca,Lee, Ji-Woong

, p. 16867 - 16881 (2021/11/18)

Transamidation reactions are often mediated by reactive substrates in the presence of overstoichiometric activating reagents and/or transition metal catalysts. Here we report the use of CO2as a traceless catalyst: in the presence of catalytic amounts of CO2, transamidation reactions were accelerated with primary, secondary, and tertiary amide donors. Various amine nucleophiles including amino acid derivatives were tolerated, showcasing the utility of transamidation in peptide modification and polymer degradation (e.g., Nylon-6,6). In particular,N,O-dimethylhydroxyl amides (Weinreb amides) displayed a distinct reactivity in the CO2-catalyzed transamidation versus a N2atmosphere. Comparative Hammett studies and kinetic analysis were conducted to elucidate the catalytic activation mechanism of molecular CO2, which was supported by DFT calculations. We attributed the positive effect of CO2in the transamidation reaction to the stabilization of tetrahedral intermediates by covalent binding to the electrophilic CO2

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 2782-40-3