456-47-3Relevant articles and documents
Generation of Oxidoreductases with Dual Alcohol Dehydrogenase and Amine Dehydrogenase Activity
Tseliou, Vasilis,Schilder, Don,Masman, Marcelo F.,Knaus, Tanja,Mutti, Francesco G.
supporting information, p. 3315 - 3325 (2020/12/11)
The l-lysine-?-dehydrogenase (LysEDH) from Geobacillus stearothermophilus naturally catalyzes the oxidative deamination of the ?-amino group of l-lysine. We previously engineered this enzyme to create amine dehydrogenase (AmDH) variants that possess a new hydrophobic cavity in their active site such that aromatic ketones can bind and be converted into α-chiral amines with excellent enantioselectivity. We also recently observed that LysEDH was capable of reducing aromatic aldehydes into primary alcohols. Herein, we harnessed the promiscuous alcohol dehydrogenase (ADH) activity of LysEDH to create new variants that exhibited enhanced catalytic activity for the reduction of substituted benzaldehydes and arylaliphatic aldehydes to primary alcohols. Notably, these novel engineered dehydrogenases also catalyzed the reductive amination of a variety of aldehydes and ketones with excellent enantioselectivity, thus exhibiting a dual AmDH/ADH activity. We envisioned that the catalytic bi-functionality of these enzymes could be applied for the direct conversion of alcohols into amines. As a proof-of-principle, we performed an unprecedented one-pot “hydrogen-borrowing” cascade to convert benzyl alcohol to benzylamine using a single enzyme. Conducting the same biocatalytic cascade in the presence of cofactor recycling enzymes (i.e., NADH-oxidase and formate dehydrogenase) increased the reaction yields. In summary, this work provides the first examples of enzymes showing “alcohol aminase” activity.
Efficient and chemoselective hydrogenation of aldehydes catalyzed by well-defined PN3-pincer manganese(ii) catalyst precursors: An application in furfural conversion
Gholap, Sandeep Suryabhan,Dakhil, Abdullah Al,Chakraborty, Priyanka,Li, Huaifeng,Dutta, Indranil,Das, Pradip K.,Huang, Kuo-Wei
supporting information, p. 11815 - 11818 (2021/11/30)
Well-defined and air-stable PN3-pincer manganese(ii) complexes were synthesized and used for the hydrogenation of aldehydes into alcohols under mild conditions using MeOH as a solvent. This protocol is applicable for a wide range of aldehydes containing various functional groups. Importantly, α,β-unsaturated aldehydes, including ynals, are hydrogenated with the CC double bond/CC triple bond intact. Our methodology was demonstrated for the conversion of biomass derived feedstocks such as furfural and 5-formylfurfural to furfuryl alcohol and 5-(hydroxymethyl)furfuryl alcohol respectively.
Disproportionation of aliphatic and aromatic aldehydes through Cannizzaro, Tishchenko, and Meerwein–Ponndorf–Verley reactions
Sharifi, Sina,Sharifi, Hannah,Koza, Darrell,Aminkhani, Ali
, p. 803 - 808 (2021/07/20)
Disproportionation of aldehydes through Cannizzaro, Tishchenko, and Meerwein–Ponndorf–Verley reactions often requires the application of high temperatures, equimolar or excess quantities of strong bases, and is mostly limited to the aldehydes with no CH2 or CH3 adjacent to the carbonyl group. Herein, we developed an efficient, mild, and multifunctional catalytic system consisting AlCl3/Et3N in CH2Cl2, that can selectively convert a wide range of not only aliphatic, but also aromatic aldehydes to the corresponding alcohols, acids, and dimerized esters at room temperature, and in high yields, without formation of the side products that are generally observed. We have also shown that higher AlCl3 content favors the reaction towards Cannizzaro reaction, yet lower content favors Tishchenko reaction. Moreover, the presence of hydride donor alcohols in the reaction mixture completely directs the reaction towards the Meerwein–Ponndorf–Verley reaction. Graphic abstract: [Figure not available: see fulltext.].
Synthesis, Docking, and Biological activities of novel Metacetamol embedded [1,2,3]-triazole derivatives
Battu, Satyanarayana,Joolakanti, Hima Bindhu,Kamepalli, Ramanjaneyulu,Miryala, Jeevanreddy
, (2021/06/18)
ERα controls the breast tissue development and progression of breast cancer. In our search for novel compounds to target Estrogen Receptor Alpha Ligand-Binding Domain, we identified “N-(3-((1H-1,2,3-triazol-4-yl)methoxy)phenyl)acetamide” derivatives as lead compounds. The Docking studies indicated good docking score for Metacetamol derivatives when docked into the 1XP6. A series of metacetamol derivatives have been synthesized, characterized and evaluated for cytotoxicity, anti bacterial and anti oxidant activities. Among the tested twelve hybrid compounds, “7a, 7g, 7h and 7i” derivatives showed promising cytotoxicity with IC50 value of 50 value of 30 μM, whereas Compounds “7a, 7b, 7c, 7d, 7g, 7j, 7k and 7l” showed moderate anti bacterial activity with the MIC value of 300 μM.
Cerium(IV) Carboxylate Photocatalyst for Catalytic Radical Formation from Carboxylic Acids: Decarboxylative Oxygenation of Aliphatic Carboxylic Acids and Lactonization of Aromatic Carboxylic Acids
Hirosawa, Keishi,Mashima, Kazushi,Satoh, Tetsuya,Shinohara, Koichi,Shirase, Satoru,Tamaki, Sota,Tsurugi, Hayato
supporting information, (2020/03/25)
We found that in situ generated cerium(IV) carboxylate generated by mixing the precursor Ce(OtBu)4 with the corresponding carboxylic acids served as efficient photocatalysts for the direct formation of carboxyl radicals from carboxylic acids under blue light-emitting diodes (blue LEDs) irradiation and air, resulting in catalytic decarboxylative oxygenation of aliphatic carboxylic acids to give C-O bond-forming products such as aldehydes and ketones. Control experiments revealed that hexanuclear Ce(IV) carboxylate clusters initially formed in the reaction mixture and the ligand-to-metal charge transfer nature of the Ce(IV) carboxylate clusters was responsible for the high catalytic performance to transform the carboxylate ligands to the carboxyl radical. In addition, the Ce(IV) carboxylate cluster catalyzed direct lactonization of 2-isopropylbenzoic acid to produce the corresponding peroxy lactone and ?3-lactone via intramolecular 1,5-hydrogen atom transfer (1,5-HAT).
One-Pot Cascade Biotransformation for Efficient Synthesis of Benzyl Alcohol and Its Analogs
Liu, Lijun,Zhu, Yuling,Chen, Yufen,Chen, Huiyu,Fan, Cong,Mo, Qiwen,Yuan, Jifeng
supporting information, p. 1018 - 1021 (2020/03/04)
Benzyl alcohol is a naturally occurring aromatic alcohol and has been widely used in the cosmetics and flavor/fragrance industries. The whole-cell biotransformation for synthesis of benzyl alcohol directly from bio-based L-phenylalanine (L-Phe) was herein explored using an artificial enzyme cascade in Escherichia coli. Benzaldehyde was first produced from L-Phe via four heterologous enzymatic steps that comprises L-amino acid deaminase (LAAD), hydroxymandelate synthase (HmaS), (S)-mandelate dehydrogenase (SMDH) and benzoylformate decarboxylase (BFD). The subsequent reduction of benzaldehyde to benzyl alcohol was achieved by a broad substrate specificity phenylacetaldehyde reductase (PAR) from Solanum lycopersicum. We found the designed enzyme cascade could efficiently convert L-Phe into benzyl alcohol with conversion above 99%. In addition, we also examined L-tyrosine (L-Tyr) and m-fluoro-phenylalanine (m-f-Phe) as substrates, the cascade biotransformation could also efficiently produce p-hydroxybenzyl alcohol and m-fluoro-benzyl alcohol. In summary, the developed biocatalytic pathway has great potential to produce various high-valued fine chemicals.
Bimetallic Bis-NHC-Ir(III) Complex Bearing 2-Arylbenzo[d]oxazolyl Ligand: Synthesis, Catalysis, and Bimetallic Effects
Huang, Shuang,Hong, Xi,Cui, He-Zhen,Zhan, Bing,Li, Zhi-Ming,Hou, Xiu-Feng
, p. 3514 - 3523 (2020/10/09)
Herein, an unprecedented bimetallic bis-NHC Cp*Ir complex 1 bearing 2-arylbenzo[d]oxazolyl and NHC ligands is reported. A significant increase in activity was observed for N-methylation of amines and reduction of aldehydes with MeOH catalyzed by 1 compared to the monometallic analogues (2-11). Under the optimal conditions, it showed to be highly effective in N-methylation of nitroarenes with MeOH as both C1 and H2 source. Substrates, including aromatic amines, ketones, and nitro compounds with various functional groups, can be well-tolerated. Mechanistic studies and DFT calculation highlight the significance of bimetallic centers cooperativity.
Polypyridyl iridium(III) based catalysts for highly chemoselective hydrogenation of aldehydes
Pandrala, Mallesh,Resendez, Angel,Malhotra, Sanjay V.
, p. 283 - 288 (2019/09/30)
Iridium-catalyzed transfer hydrogenation (TH) of carbonyl compounds using HCOOR (R = H, Na, NH4) as a hydrogen source is a pivotal process as it provides the clean process and is easy to execute. However, the existing highly efficient iridium catalysts work at a narrow pH; thus, does not apply to a wide variety of substrates. Therefore, the development of a new catalyst which works at a broad pH range is essential as it can gain a broader scope of utilization. Here we report highly efficient polypyridyl iridium(III) catalysts, [Ir(tpy)(L)Cl](PF6)2 {where tpy = 2,2′:6′,2′'-Terpyridine, L = phen (1,10-Phenanthroline), Me2phen (4,7-Dimethyl-1,10-phenanthroline), Me4phen (3,4,7,8-Tetramethyl-1,10-phenanthroline), Me2bpy (4,4′-Dimethyl-2–2′-dipyridyl)} for the chemoselective reduction of aldehydes to alcohols in aqueous ethanol and sodium formate as the hydride source. The reaction can be carried out efficiently in broad pH ranges, from pH 6 to 11. These catalysts are air stable, easy to prepare using commercially available starting materials, and are highly applicable for a wide range of substrates, such as electron-rich or deficient (hetero)arenes, halogens, phenols, alkoxy, ketones, esters, carboxylic acids, cyano, and nitro groups. Particularly, acid and hydroxy groups containing aldehydes were reduced successfully in basic and acidic reaction conditions, demonstrating the efficiency of the catalyst in a broad pH range with high conversion rates under microwave irradiation.
A new anthraquinoid ligand for the iron-catalyzed hydrosilylation of carbonyl compounds at room temperature: New insights and kinetics
Raya-Barón, álvaro,Galdeano-Ruano, Carmen P.,O?a-Burgos, Pascual,Rodríguez-Diéguez, Antonio,Langer, Robert,López-Ruiz, Rosalía,Romero-González, Roberto,Kuzu, Istemi,Fernández, Ignacio
supporting information, p. 7272 - 7281 (2018/06/04)
The reaction of 1-((2-(pyridin-2-yl)ethyl)amino)anthraquinone with either Fe(HMDS)2 or Li(HMDS)/FeCl2 allowed the preparation of a new anthraquinoid-based iron(ii) complex active in the hydrosilylations of carbonyls. The new complex Fe(2)2 was characterized by single-crystal X-ray diffraction, infrared spectroscopy, NMR, and high resolution mass spectrometry (electrospray ionization). Superconducting quantum interference device (SQUID) magnetometry established no spin crossover behavior with an S = 2 state at room temperature. This complex was determined to be an effective catalyst for the hydrosilylation of aldehydes and ketones, exhibiting turnover frequencies of up to 63 min-1 with a broad functional group tolerance by just using 0.25 mol% of the catalyst at room temperature, and even under solvent-free conditions. The aldehyde hydrosilylation makes it one of the most efficient first-row transition metal catalysts for this transformation. Kinetic studies have proven first-order dependences with respect to acetophenone and Ph2SiH2 and a fractional order in the case of the catalyst.
Transfer hydrogenation and hydration of aromatic aldehydes and nitriles using heterogeneous NiO nanofibers as a catalyst
Thenmozhi,Kadirvelu
, p. 15572 - 15577 (2018/10/04)
A simple and efficient hydrogen transfer reaction of aldehydes and hydration of nitriles using nickel oxide nanofibers (NiO NFs) as a heterogeneous catalyst is reported. NiO NFs prepared by electrospinning technique was cubic (confirmed by XRD) with an average diameter of 80 nm (obtained from HR-TEM) and utilized as a nanocatalyst for heterogeneous transfer hydrogenation of aromatic aldehydes and hydration of aromatic nitriles. All the reaction products produced with minimum reaction time and maximum yield were confirmed using GC-MS with NIST library. Furthermore, heterogeneity of the catalyst was confirmed with ICP-MS analysis. The as-prepared catalyst was reused for six cycles and was found to be efficient. Hence, the present catalytic synthesis of alcohols and amides may be an economically viable process.