7367-81-9Relevant articles and documents
A Method for preparing alpha-olefins from Biomass-derived fat and oil
-
Paragraph 0145; 0153-0156, (2020/09/22)
The present invention relates to a method for preparing alpha-olefins from biomass-derived fats and oils. According to the preparation method, all of the various saturated or unsaturated fatty acids in the biomass-derived fats and oils can be prepared into alpha-olefins, and a conventional problem that the saturated fatty acids do not participate in a reaction or a mixture is generated due to polyunsaturated fatty acids can be solved. Thus, the present invention can be advantageously used to prepare alpha-olefins from biomass.
Optimized Immobilization Strategy for Dirhodium(II) Carboxylate Catalysts for C?H Functionalization and Their Implementation in a Packed Bed Flow Reactor
Davies, Huw M. L.,Hatridge, Taylor A.,Jones, Christopher W.,Liu, Wenbin,Yoo, Chun-Jae
supporting information, p. 19525 - 19531 (2020/07/13)
Herein we demonstrate a packed bed flow reactor capable of achieving highly regio- and stereoselective C?H functionalization reactions using a newly developed Rh2(S-2-Cl-5-CF3TPCP)4 catalyst. To optimize the immobilized dirhodium catalyst employed in the flow reactor, we systematically study both (i) the effects of ligand immobilization position, demonstrating the critical factor that the catalyst-support attachment location can have on the catalyst performance, and (ii) silica support mesopore length, demonstrating that decreasing diffusional limitations leads to increased accessibility of the active site and higher catalyst turnover frequency. We employ the immobilized dirhodium catalyst in a simple packed bed flow reactor achieving comparable yields and levels of enantioselectivity to the homogeneous catalyst employed in batch and maintain this performance over ten catalyst recycles.
Electrophilic Iron Catalyst Paired with a Lithium Cation Enables Selective Functionalization of Non-Activated Aliphatic C?H Bonds via Metallocarbene Intermediates
Hernán-Gómez, Alberto,Rodríguez, Mònica,Parella, Teodor,Costas, Miquel
, p. 13904 - 13911 (2019/08/30)
Combining an electrophilic iron complex [Fe(Fpda)(THF)]2 (3) [Fpda=N,N′-bis(pentafluorophenyl)-o-phenylenediamide] with the pre-activation of α-alkyl-substituted α-diazoesters reagents by LiAl(ORF)4 [ORF=(OC(CF3)3] provides unprecedented access to selective iron-catalyzed intramolecular functionalization of strong alkyl C(sp3)?H bonds. Reactions occur at 25 °C via α-alkyl-metallocarbene intermediates, and with activity/selectivity levels similar to those of rhodium carboxylate catalysts. Mechanistic investigations reveal a crucial role of the lithium cation in the rate-determining formation of the electrophilic iron-carbene intermediate, which then proceeds by concerted insertion into the C?H bond.
Control Mechanism for cis Double-Bond Formation by Polyunsaturated Fatty-Acid Synthases
Hayashi, Shohei,Satoh, Yasuharu,Ogasawara, Yasushi,Maruyama, Chitose,Hamano, Yoshimitsu,Ujihara, Tetsuro,Dairi, Tohru
, p. 2326 - 2330 (2019/02/01)
Polyunsaturated fatty acids (PUFAs) such as docosahexaenoic acid (DHA), eicosapentaenoic acid (EPA), and arachidonic acid (ARA) are essential fatty acids for humans. Some microorganisms biosynthesize these PUFAs through PUFA synthases composed of four subunits with multiple catalytic domains. These PUFA synthases each create a specific PUFA without undesirable byproducts, even though the multiple catalytic domains in each large subunit are very similar. However, the detailed biosynthetic pathways and mechanisms for controlling final-product profiles are still obscure. In this study, the FabA-type dehydratase domain (DHFabA) in the C-subunit and the polyketide synthase-type dehydratase domain (DHPKS) in the B-subunit of ARA synthase were revealed to be essential for ARA biosynthesis by in vivo gene exchange assays. Furthermore, in vitro analysis with truncated recombinant enzymes and C4- to C8-acyl ACP substrates showed that ARA and EPA synthases utilized two types of DH domains, DHPKS and DHFabA, depending on the carbon-chain length, to introduce either saturation or cis double bonds to growing acyl chains.
Mechanochemical enzymatic resolution of N-benzylated-β3-amino esters
Pérez-Venegas, Mario,Reyes-Rangel, Gloria,Neri, Adrián,Escalante, Jaime,Juaristi, Eusebio
supporting information, p. 1728 - 1734 (2017/09/27)
The use of mechanochemistry to carry out enantioselective reactions has been explored in the last ten years with excellent results. Several chiral organocatalysts and even enzymes have proved to be resistant to milling conditions, which allows for rather efficient enantioselective transformations under ball-milling conditions. The present article reports the first example of a liquid-assisted grinding (LAG) mechanochemical enzymatic resolution of racemic β3-amino esters employing Candida antarctica lipase B (CALB) to afford highly valuable enantioenriched N-benzylated-β3-amino acids in good yields. Furthermore the present protocol is readily scalable.
Polyhydroxyalkanoate-based 3-hydroxyoctanoic acid and its derivatives as a platform of bioactive compounds
Radivojevic, Jelena,Skaro, Sanja,Senerovic, Lidija,Vasiljevic, Branka,Guzik, Maciej,Kenny, Shane T.,Maslak, Veselin,Nikodinovic-Runic, Jasmina,OConnor, Kevin E.
, p. 161 - 172 (2016/01/09)
A library of 18 different compounds was synthesized starting from (R)-3-hydroxyoctanoic acid which is derived from the bacterial polymer polyhydroxyalkanoate (PHA). Ten derivatives, including halo and unsaturated methyl and benzyl esters, were synthesized and characterized for the first time. Given that (R)-3-hydroxyalkanoic acids are known to have biological activity, the new compounds were evaluated for antimicrobial activity and in vitro antiproliferative effect with mammalian cell lines. The presence of the carboxylic group was essential for the antimicrobial activity, with minimal inhibitory concentrations against a panel of bacteria (Gram-positive and Gram-negative) and fungi (Candida albicans and Microsporum gypseum) in the range 2.87.0 mM and 0.16.3 mM, respectively. 3-Halogenated octanoic acids exhibited the ability to inhibit C. albicans hyphae formation. In addition, (R)-3-hydroxyoctanoic and (E)-oct-2-enoic acids inhibited quorum sensing-regulated pyocyanin production in the opportunistic pathogen Pseudomonas aeruginosa PAO1. Generally, derivatives did not inhibit mammalian cell proliferation even at 3-mM concentrations, while only (E)-oct-2-enoic and 3-oxooctanoic acid had IC50 values of 1.7 and 1.6 mM with the human lung fibroblast cell line.
Characterization of FabG and FabI of the Streptomyces coelicolor dissociated fatty acid synthase
Singh, Renu,Reynolds, Kevin A.
, p. 631 - 640 (2015/03/31)
Streptomyces coelicolor produces fatty acids for both primary metabolism and for biosynthesis of the secondary metabolite undecylprodiginine. The first and last reductive steps during the chain elongation cycle of fatty acid biosynthesis are catalyzed by FabG and FabI. The S. coelicolor genome sequence has one fabI gene (SCO1814) and three likely fabG genes (SCO1815, SCO1345, and SCO1846). We report the expression, purification, and characterization of the corresponding gene products. Kinetic analyses revealed that all three FabGs and FabI are capable of utilizing both straight and branched-chain β-ketoacyl-NAC and enoyl-NAC substrates, respectively. Furthermore, only SCO1345 differentiates between ACPs from both biosynthetic pathways. The data presented provide the first experimental evidence that SCO1815, SCO1346, and SCO1814 have the catalytic capability to process intermediates in both fatty acid and undecylprodiginine biosynthesis.
Regio- and Stereocontrol in the Reactions of α-Halo-β,γ-enoates and α- O -Phosphono-β,γ-enenitriles with Organocuprates
Dieter, R. Karl,Picado, Alfredo
, p. 11125 - 11138 (2015/02/19)
The reactions of (Z)- and (E)-ethyl 2-chloro-3-octenoate (4a and 17) and (E)- and (Z)-diethyl (1-cyano-2-heptenyl)phosphate (21a and 21b) with organocuprates were investigated as potential substrates for preparing γ-substituted α,β-enoates and enenitriles. In these copper-mediated allylic substitution reactions, the Z-isomer 4a displayed complete regio- and stereoselectivity (i.e., E:Z), while the regio- and stereoselectivity for E-isomer 17 varied as a function of solvent, cuprate reagent, transferable ligand, and cuprate counterion (e.g., Li+ vs MgX+). Excellent selectivities could be achieved with 17 and nBuCuCNLi in Et2O. Conditions for improved selectivities in the reactions of allylic cyanophosphates over those previously reported were found. A series of relative rate and competition experiments was performed, and the degree of regio- and stereoselectivity for each system was rationalized in the light of the current mechanistic understanding of cuprate-mediated allylic substitution reactions.
A new stereocontrolled total synthesis of the mast cell inhibitory alkaloid, (+)-monanchorin, via the wittig reaction of a stabilized ylide with a cyclic guanidine hemiaminal
Hale, Karl J.,Wang, Liping
supporting information, p. 2154 - 2157 (2014/05/06)
An asymmetric total synthesis of the mast cell inhibitor (+)-monanchorin is reported in which a Sharpless AD on 11 and a cyclic sulfate ring opening with an azide feature as key steps. After further manipulation, a novel guanidine-controlled ester reduction provided the guanidine-hemiaminal 25 which underwent Wittig olefination to give 27. Hydrogenation and a second guanidine-controlled reduction of the ester in 28, to obtain aldehyde 29, then set up a trifluoroacetic acid mediated cyclization to give (+)-monanchorin TFA salt.
Relay cross metathesis reactions of vinylphosphonates
Malla, Raj K.,Ridenour, Jeremy N.,Spilling, Christopher D.
, p. 1933 - 1941 (2014/10/16)
Dimethyl (β-substituted) vinylphosphonates do not readily undergo cross metathesis reactions with Grubbs catalyst and terminal alkenes. However, the corresponding mono- or diallyl vinylphosphonate esters undergo facile cross metathesis reactions. The improved reactivity is attributed to a relay step in the cross metathesis reaction mechanism.