94-30-4Relevant articles and documents
Mechanistic insight into the synergistic Cu/Pd-catalyzed carbonylation of aryl iodides using alcohols and dioxygen as the carbonyl source
Li, Junxuan,Zhou, Jinlei,Wang, Yumei,Yu, Yue,Liu, Qiang,Yang, Tilong,Chen, Huoji,Cao, Hua
, p. 68 - 74 (2021/11/16)
Pd-catalyzed carbonylation, as an efficient synthetic approach to the installation of carbonyl groups in organic compounds, has been one of the most important research fields in the past decade. Although elegant reactions that allow highly selective carbonylations have been developed, straightforward routes with improved reaction activity and broader substrate scope remain long-term challenges for new practical applications. Here, we show a new type of synergistic Cu/Pd-catalyzed carbonylation reaction using alcohols and dioxgen as the carbonyl sources. A broad range of aryl iodides and alcohols are compatible with this protocol. The reaction is concise and practical due to the ready availability of the starting materials and the scalability of the reaction. In addition, the reaction affords lactones and lactams in an intermolecular fashion. Moreover, DFT calculations have been performed to study the detailed mechanisms. [Figure not available: see fulltext.]
Exploiting the photocatalytic activity of TiO2towards the depolymerization of Kraft lignin
Baker, R. Tom,Crites, Charles-Oneil L.,Gomes de Mendon?a, Fernanda,Hallett-Tapley, Geniece L.,Netto-Ferreira, José Carlos,Tremblay, Luc
supporting information, p. 15371 - 15377 (2021/09/07)
Lignin is a promising renewable source of aromatic chemicals. Described herein is a new photocatalytic methodology for depolymerization of oxidized Kraft lignin to industrially relevant aromatic platform chemicals. The photooxidation route begins with oxidation of alcohol moieties using a gold nanoparticle/hydrotalcite composite. Next, the oxidized lignin is subjected to UVA irradiation in the presence of TiO2, leading to a 3-fold decrease of its molecular weight and to the formation of various monolignols. The products obtained in both steps were characterized using FTIR, SEC, GC-MS, and 2D NMR spectroscopy, which confirm the depolymerization of lignin to smaller molecular weight products. This method offers both energetic and chemical advantages over thermochemical processing for lignin valorisation.
Pleuromutilin derivative with 1, 3, 4-oxadiazole side chain and preparation and application thereof
-
Paragraph 0055-0056; 0070; 0090; 0092; 0095; 0103, (2021/07/24)
The invention belongs to the field of medicinal chemistry, and particularly relates to a pleuromutilin derivative with a 1, 3, 4-oxadiazole side chain and preparation and application thereof The pleuromutilin derivative with the 1, 3, 4-oxadiazole side chain is a compound shown in a formula 2 or a pharmaceutically acceptable salt thereof, and a solvent compound, an enantiomer, a diastereoisomer and a tautomer of the compound shown in the formula 2 or the pharmaceutically acceptable salt thereof or a mixture of the solvent compound, the enantiomer, the diastereoisomer and the tautomer in any proportion, including a racemic mixture. The pleuromutilin derivative has good antibacterial activity, is especially suitable for being used as a novel antibacterial agent for systemic system infection of animals or human beings, and has good water solubility.
Oxazole ring-containing honokiol thioether derivative and preparation method and application thereof
-
Paragraph 0042-0044, (2021/08/11)
The invention discloses an oxazole ring-containing honokiol thioether derivative, a preparation method thereof and application of the oxazole ring-containing honokiol thioether derivative as an alpha-glucosidase inhibitor, the chemical structure of the oxazole ring-containing honokiol thioether derivative is shown as a general formula (I), and R is selected from non-substituted or substituted phenyl. Compared with the prior art, the invention provides the novel honokiol thioether derivative containing the oxazole ring, and the honokiol thioether derivative containing the oxazole ring has good inhibitory activity on alpha-glucosidase, provides more possibilities for treating diabetes, and is expected to be used for preparing novel candidate drug molecules for treating diabetes. In addition, the preparation process is simple, the cost is low, and the yield is high.
Electro-Oxidative Selective Esterification of Methylarenes and Benzaldehydes
Yu, Congjun,?zkaya, Bünyamin,Patureau, Frederic W.
supporting information, p. 3682 - 3687 (2021/02/01)
A mild and green electro-oxidative protocol to construct aromatic esters from methylarenes and alcohols is herein reported. Importantly, the reaction is free of metals, chemical oxidants, bases, acids, and operates at room temperature. Moreover, the design of the electrolyte was found critical for the oxidation state and structure of the coupling products, a rarely documented effect. This electro-oxidative coupling process also displays exceptional tolerance of many fragile easily oxidized functional groups such as hydroxy, aldehyde, olefin, alkyne, as well as neighboring benzylic positions. The enantiomeric enrichment of some chiral alcohols is moreover preserved during this electro-oxidative coupling reaction, making it overall a promising synthetic tool.
A Bifunctional Copper Catalyst Enables Ester Reduction with H2: Expanding the Reactivity Space of Nucleophilic Copper Hydrides
Kaicharla, Trinadh,Ngoc, Trung Tran,Teichert, Johannes F.,Tzaras, Dimitrios-Ioannis,Zimmermann, Birte M.
supporting information, p. 16865 - 16873 (2021/10/20)
Employing a bifunctional catalyst based on a copper(I)/NHC complex and a guanidine organocatalyst, catalytic ester reductions to alcohols with H2 as terminal reducing agent are facilitated. The approach taken here enables the simultaneous activation of esters through hydrogen bonding and formation of nucleophilic copper(I) hydrides from H2, resulting in a catalytic hydride transfer to esters. The reduction step is further facilitated by a proton shuttle mediated by the guanidinium subunit. This bifunctional approach to ester reductions for the first time shifts the reactivity of generally considered "soft"copper(I) hydrides to previously unreactive "hard"ester electrophiles and paves the way for a replacement of stoichiometric reducing agents by a catalyst and H2.
Using m icrowave and ultrasound to synthesis of substituted bis-acyl hydrazone derivatives
Mohammed, Salim J.,Sheat, Attallah M.,A.abood, Salih,Yahya, Omar M.
, p. 6423 - 6427 (2021/11/01)
In this paper, some new bis-acyl hydrazone derivatives (4a-f) were prepared through the reaction of carboxylic acid hydrazides with 1,4-diacetylbenzene using classical methods, microwave and ultrasound irradiation methods. These compounds are obtained through a series of reactions where some carboxylic acids react with ethanol first in the presence of concentrated sulfuric acid to give the corresponding esters (2a-f), which when treatment with aqueous hydrazine give carboxylic acid hydrazides (3a-f).thus, The results proved that the use of microwave and ultrasound techniques is much better than the classical methods, as it gave a higher yield, shorter reaction time, and the absence of the use of solvents. All newly synthesized compounds were confirmed by IR, (1H & 13C) NMR spectral analysis and the corresponding reactions were monitored by TLC using the reported eluent.
Design and synthesis of pyrimidine-5-carbonitrile hybrids as COX-2 inhibitors: Anti-inflammatory activity, ulcerogenic liability, histopathological and docking studies
Alfayomy, Abdallah M.,Abdel-Aziz, Salah A.,Marzouk, Adel A.,Shaykoon, Montaser Sh. A.,Narumi, Atsushi,Konno, Hiroyuki,Abou-Seri, Sahar M.,Ragab, Fatma A.F.
, (2021/01/04)
Two new series of 1,3,4-oxadiazole and coumarin derivatives based on pyrimidine-5-carbonitrile scaffold have been synthesized and evaluated for their COX-1/COX-2 inhibitory activity. Compounds 10c, 10e, 10h-j, 14e-f, 14i and 16 were found to be the most potent and selective inhibitors of COX-2 (IC50 0.041–0.081 μM, SI 139.74–321.95). Eight compounds were further investigated for their in vivo anti-inflammatory activity. The most active derivatives 10c, 10j and 14e displayed superior in vivo anti-inflammatory activity (% edema inhibition 39.3–48.3, 1 h; 58.4–60.5, 2 h; 70.8–83.2, 3 h; 78.9–89.5, 4 h) to the reference drug celecoxib (% edema inhibition 38.0, 1 h; 48.8, 2 h; 58.4, 3 h; 65.4, 4 h). These derivatives were also tested for their ulcerogenic liability, compound 10j showed better safety profile with reference to celecoxib while 10c and 14e exhibited mild lesions. Molecular docking studies of 10c, 10j, and 14e in the COX-2 active site revealed similar orientation and binding interactions as selective COX-2 inhibitors with a higher liability to access the selectivity side pocket.
Unravelling the anticancer potency of 1,2,4-triazole-N-arylamide hybrids through inhibition of STAT3: synthesis and in silico mechanistic studies
Turky, Abdallah,Bayoumi, Ashraf H.,Sherbiny, Farag F.,El-Adl, Khaled,Abulkhair, Hamada S.
, p. 403 - 420 (2020/08/25)
Abstract: The discovery of potent STAT3 inhibitors has gained noteworthy impetus in the last decade. In line with this trend, considering the proven biological importance of 1,2,4-triazoles, herein, we are reporting the design, synthesis, pharmacokinetic profiles, and in vitro anticancer activity of novel C3-linked 1,2,4-triazole-N-arylamide hybrids and their in silico proposed mechanism of action via inhibition of STAT3. The 1,2,4-triazole scaffold was selected as a privilege ring system that is embedded in core structures of a variety of anticancer drugs which are either in clinical use or still under clinical trials. The designed 1,2,4-triazole derivatives were synthesized by linking the triazole-thione moiety through amide hydrophilic linkers with diverse lipophilic fragments. In silico study to predict cytotoxicity of the new hybrids against different kinds of human cancer cell lines as well as the non-tumor cells was conducted. The multidrug-resistant human breast adenocarcinoma cells (MDA-MB-231) was found most susceptible to the cytotoxic effect of synthesized compounds and hence were selected to evaluate the in vitro anticancer activity. Four of the designed derivatives showed promising cytotoxicity effects against selected cancer cells, among which compound 12 showed the highest potency (IC50 = 3.61?μM), followed by 21 which displayed IC50 value of 3.93?μM. Also, compounds 14 and 23 revealed equipotent activity with the reference cytotoxic agent doxorubicin. To reinforce these observations, the obtained data of in vitro cytotoxicity have been validated in terms of ligand–protein interaction and new compounds were analyzed for ADMET properties to evaluate their potential to build up as good drug candidates. This study led us to identify two novel C3-linked 1,2,4-triazole-N-arylamide hybrids of interesting antiproliferative potentials as probable lead inhibitors of STAT3 with promising pharmacokinetic profiles. Graphic abstract: [Figure not available: see fulltext.]
Design, synthesis, in vitro and in vivo evaluation against MRSA and molecular docking studies of novel pleuromutilin derivatives bearing 1, 3, 4-oxadiazole linker
Liu, Jie,Zhang, Guang-Yu,Zhang, Zhe,Li, Bo,Chai, Fei,Wang, Qi,Zhou, Zi-Dan,Xu, Ling-Ling,Wang, Shou-Kai,Jin, Zhen,Tang, You-Zhi
, (2021/05/17)
A class of pleuromutilin derivatives containing 1, 3, 4-oxadiazole were designed and synthesized as potential antibacterial agents against Methicillin-resistant staphylococcus aureus (MRSA). The ultrasound-assisted reaction was proposed as a green chemistry method to synthesize 1, 3, 4-oxadiazole derivatives (intermediates 85–110). Among these pleuromutilin derivatives, compound 133 was found to be the strongest antibacterial derivative against MRSA (MIC = 0.125 μg/mL). Furthermore, the result of the time-kill curves displayed that compound 133 could inhibit the growth of MRSA in vitro quickly (- 4.36 log10 CFU/mL reduction). Then, compound 133 (- 1.82 log10 CFU/mL) displayed superior in vivo antibacterial efficacy than tiamulin (- 0.82 log10 CFU/mL) in reducing MRSA load in mice thigh model. Besides, compound 133 exhibited low cytotoxicity to RAW 264.7 cells. Molecular docking studies revealed that compound 133 was successfully localized in the binding pocket of 50S ribosomal subunit (ΔGb = -10.50 kcal/mol). The results indicated that these pleuromutilin derivatives containing 1, 3, 4-oxadiazole might be further developed into novel antibiotics against MRSA.