Scheme 3. Spiroketalization
Transformation of the 1,3-anti-diol as the corresponding
to low discrimination between the two p-methoxy benzoate
moieties. In situ generated potassium isopropoxide was the
most efficient base and furnished alcohol (+)-7 in 78% yield
based on recovered starting material (brsm) (47% yield).
Triol (+)-8 was then obtained by acidic methanolysis of the
acetonide moiety.
acetonide and subsequent etherification of the remaining
secondary alcohol provided the orthogonally protected hexol
(+)-6 in 58% yield (two steps). At this stage, the selective
saponification of the C(4IV)-p-methoxy benzoate (PMBz) was
investigated. Several alcoholates were assayed (MeOK,
2-BuOK, 2,2-dimethyl-3-pentanolate, 3-pentanolate) but led
In a first series of attempts, ozonolysis of the olefin moiety
of (+)-8 followed by reductive treatment, first with dimethyl
sulfide then with K-selectride, afforded a 1:3 mixture of
linear ketone (-)-9 and hemiketal (-)-10, in 65% yield (three
steps, Scheme 3). Gratifyingly, when the crude mixture was
submitted to slow chromatography on silica gel, the linear
intermediate was fully isomerized to the hemiketal to furnish
(-)-10 in 82% yield (three steps). All attempts to perform
spiroketalization from the linear intermediate (-)-9 were not
met with success. Nevertheless, acidic treatment of (-)-10
with CSA allowed cyclization to the thermodynamic spiro-
ketal (-)-11 in 88% yield. Interestingly, the use of PPTS
for this step led to a separable mixture of the axial/axial
spiroketal (-)-11 and its equatorial/equatorial stereoisomer
(-)-12 (for conformational assignments, see Supporting
Information) in a 3:2 ratio (62% yield). Variation on the
nature of the acidic partner can therefore lead to different
stereomeric 6,6-spiroketals. The primary alcohol of (-)-11
was then selectively silylated to afford (-)-13. The structure
of the spiroketal was assigned on the basis of its 2D NOESY
(5) (a) Micalizio, G. C.; Roush, W. R. Tetrahedron Lett. 1999, 40, 3351.
(b) Micalizio, G. C.; Pinchuk, A. N.; Roush, W. R. J. Org. Chem. 2000,
65, 8730. (c) Holson, E. B.; Roush, W. R. Org. Lett. 2002, 4, 3719. (d)
Holson, E. B.; Roush, W. R. Org. Lett. 2002, 4, 3723. (e) Terauchi, T.;
Nakata, M. Tetrahedron Lett. 1998, 39, 3795. (f) Terauchi, T.; Terauchi,
T.; Sato, I.; Tsukada, T.; Kanoh, N.; Nakata, M. Tetrahedron Lett. 2000,
41, 2649. (g) Terauchi, T.; Morita, M.; Kimijima, K.; Nakamura, Y.;
Hayashi, G.; Tanaka, T.; Kanoh, N.; Nakata, M. Tetrahedron Lett. 2001,
42, 5505. (h) Terauchi, T.; Terauchi, T.; Sato, I.; Shoji, W.; Tsukada, T.;
Tsunoda, T.; Kanoh, N.; Nakata, M. Tetrahedron Lett. 2003, 44, 7741. (i)
Terauchi, T.; Tanaka, T.; Terauchi, T.; Morita, M.; Kimijima, K.; Sato, I.;
Shoji, W.; Nakamura, Y.; Tsukada, T.; Tsunoda, T.; Hayashi, G.; Kanoh,
N.; Nakata, M. Tetrahedron Lett. 2003, 44, 7747. (j) Paquette, L. A.; Zuev,
D. Tetrahedron Lett. 1997, 38, 5115. (k) Cho, I. H.; Paquette, L. A.
Heterocycles 2002, 58, 43. (l) Zuev, D.; Paquette, L. A. Org. Lett. 2000, 2,
679. (m) Ciblat, S.; Kim, J.; Stewart, C. A.; Wang, J.; Forgione, P.; Clyne,
D.; Paquette, L. A. Org. Lett. 2007, 9, 719. (n) Lemaire-Audoire, S.; Vogel,
P. Tetrahedron Lett. 1998, 39, 1345. (o) Zemribo, R.; Mead, K. T.
Tetrahedron Lett. 1998, 39, 3891. (p) Zemribo, R.; Mead, K. T. Tetrahedron
Lett. 1998, 39, 3895. (q) Kary, P. D.; Roberts, S. M. Tetrahedron:
Asymmetry 1999, 10, 217. (r) Dunkel, R.; Treu, J.; Hoffmann, H. M. R.
Tetrahedron: Asymmetry 1999, 10, 1539. (s) Barrett, A. G. M.; Braddock,
D. C.; de Koning, P. D.; White, A. J. P.; Williams, D. J. J. Org. Chem.
2000, 65, 375. (t) Lemaire-Audoire, S.; Vogel, P. J. Org. Chem. 2000, 65,
3346. (u) Zuev, D.; Paquette, L. A. Org. Lett. 2000, 2, 679. (v) Samadi,
M.; Munoz-Letelier, C.; Poigny, S.; Guyot, M. Tetrahedron Lett. 2000, 41,
3349. (w) Anderson, J. C.; McDermott, B. P.; Griffin, E. J. Tetrahedron
2000, 56, 8747. (x) Lau, C. K.; Crumpler, S.; Macfarlance, K.; Lee, F.;
Berthelette, C. Synlett 2004, 2281. (y) Allais, F.; Cossy, J. Org. Lett. 2006,
8, 3655. (z) Paterson, I.; Gottschling, D.; Menche, D. Chem. Commun. 2005,
3568.
3
1H NMR spectrum. The JH,H coupling constants observed
for protons H-C(2′′), H-C(3′′), H-C(4′′), H-C(8′′),
H-C(9′′), and H-C(10′′) as well as diagnostic NOEs
[H-C(2′′)/H-C(4′′), H-C(8′′)/H-C(10′′)] established the
chair conformation of the two rings. NOEs between the pairs
of axial and equatorial H-C(5′′)/H-C(11′′) and cross-peaks
between the signals of H-C(2′′) and H-C(8′′) proved the
axial/axial conformation of the spiroketal.
(6) (a) Schwenter, M. E.; Vogel, P. Chem.sEur. J. 2000, 6, 4091. (b)
Schwenter, M. E.; Vogel, P. J. Org. Chem. 2001, 66, 7869. (c) Meilert, K.
M.; Schwenter, M. E.; Shatz, Y.; Dubbaka, S. R.; Vogel, P. J. Org. Chem.
2003, 68, 2964. (d) Vogel, P.; Gerber-Lemaire, S.; Carmona, A. T.; Meilert,
K. T.; Schwenter, M. E. Pure Appl. Chem. 2005, 77, 131.
(7) Gerber-Lemaire, S.; Carmona Asenjo, A. T.; Meilert, K.; Vogel, P.
Eur. J. Org. Chem. 2006, 891.
(8) Meilert, K.; Pettit, G. R.; Vogel, P. HelV. Chim. Acta 2004, 87, 1493.
(9) Kolb, H. C.; Van Nieuwenhze, M. S.; Sharpless, K. B. Chem. ReV.
1994, 94, 2488.
(10) Evans, D. A.; Chapman, K. T.; Carreira, E. M. J. Am. Chem. Soc.
1988, 110, 3560.
The functionalities of the AB spiroketal of spongistatins
were then introduced on the two rings (Scheme 4). Oxidation
of the alcohol at C(4′′) under Ley’s conditions11 followed
by diastereoselective equatorial addition of methyl magne-
Org. Lett., Vol. 9, No. 24, 2007
5109