6592
T. Asaki et al. / Bioorg. Med. Chem. Lett. 17 (2007) 6588–6592
(high electronegativity) through green to blue (high elec-
tropositivity). The electrostatic-potential map of 5c
clearly differs from those of 2, 5a, 5b, 10, and 13, in that
the adjacent location of the two nitrogen atoms greatly
increases the red area around the nitrogen atoms. In
the IP receptor, the hydroxyl groups of Ser20 and
Tyr75 are close together and form an electronegative
environment. The electronegativity of the two adjacent
nitrogen atoms in 5c may lead to unfavorable electronic
interactions between the nitrogen atoms and the electro-
negative hydroxyl groups of Ser20 and Tyr75, thereby
weakening the hydrogen-bonding interaction between
them. Even though 5d also has two adjacent nitrogen
atoms, it is more active than 5c. This is reasonable be-
cause 5d also has a nitrogen atom at the 1-position, so
that a 5a-type interaction is possible.
References and notes
1. Moncada, S.; Gryglewski, R.; Bunting, S.; Vane, J. R.
Nature 1976, 263, 663.
2. Moncada, S.; Vane, J. R. Pharmacol. Rev. 1978, 30, 293.
3. Barst, R. J.; Rubin, L. J.; Long, W. A.; McGoon, M. D.;
Rich, S.; Badesch, D. B.; Groves, B. M.; Tapson, V. F.;
Bourge, R. C.; Brundage, B. H.; Koerner, S. K.; Langle-
ben, D.; Keller, C. A.; Murali, S.; Uretsky, B. F.; Clayton,
L. M.; Jo¨bsis, M. M.; Blackburn, S. D., Jr.; Shortino, D.;
Crow, J. W. N. Engl. J. Med. 1996, 334, 296.
4. Skuballa, W.; Vorbruggen, H. Angew. Chem., Int. Ed.
¨
Engl. 1981, 20, 1046.
5. Skuballa, W.; Schillinger, E.; Sturzebecher, C.-S.; Vorbrug-
¨
gen, H. J. Med. Chem. 1986, 29, 313.
¨
6. Ohno, K.; Nagase, H.; Matsumoto, K.; Nishigama, H.;
Nishio, S. Adv. Prostaglandin Thromboxane Leukotriene
Res. 1985, 15, 279.
7. Meanwell, N. A.; Rosenfeld, M. J.; Trehan, A. K.; Wright,
J. J. K.; Brassard, C. L.; Buchanan, J. O.; Federici, M. E.;
Fleming, J. S.; Gamberdella, M.; Zavoico, G. B.; Seiler, S.
M. J. Med. Chem. 1992, 35, 3483.
8. Meanwell, N. A.; Romine, J. L.; Rosenfeld, M. J.; Martin,
S. W.; Trehan, A. K.; Wright, J. J. K.; Malley, M. F.;
Gougoutas, J. Z.; Brassard, C. L.; Buchanan, J. O.;
Federici, M. E.; Fleming, J. S.; Gamberdella, M.; Hartl,
K. S.; Zavoico, G. B.; Seiler, S. M. J. Med. Chem. 1993,
36, 3884.
9. Hamanaka, N.; Takahashi, K.; Nagao, Y.; Torisu, K.;
Tokumoto, H.; Kondo, K. Bioorg. Med. Chem. Lett. 1995,
5, 1083.
10. Hattori, K.; Tabuchi, S.; Okitsu, O.; Taniguchi, K. Bioorg.
Med. Chem. Lett. 2003, 13.
Our results can be summarized as follows. (1) The
important interactions with the IP are the same for pros-
tacyclin and the diphenylpyrazine derivatives: electro-
static interactions between the terminal carboxyl group
and the guanidino group of Arg279, hydrogen-bonding
interactions between a nitrogen atom of the heteroaro-
matic ring and the hydroxyl group of Ser20 or Tyr75,
and van der Waals interactions with the hydrophobic
side chains of Met23, Leu67, Val71, Phe95, Met99,
Phe102, Phe278, Ala282, and Pro285. (2) The flexibility
of the substituent at the 2-position and the presence of
the same group at the 5- and 6-positions allow two
modes of binding depending on the position of the nitro-
gen atom in the heteroaromatic ring. (3) A favorable
hydrogen-bonding interaction between a nitrogen atom
of the heteroaromatic ring and Ser20 or Tyr75 greatly
contributes to the agonistic activity.
11. Asaki, T.; Hamamoto, T.; Sugiyama, Y.; Kuwano, K.;
12. Pietraszkiewicz, M.; Jurczak, J. Tetrahedron 1984, 40,
2967.
13. Burns, S. A.; Corriu, R. J. P.; Huynh, V.; Moreau, J. J. E.
J. Organomet. Chem. 1987, 333, 281.
14. Yamamoto, K.; Yamazaki, S.; Murata, I. J. Org. Chem.
1987, 52, 5239.
15. Sasaki, T.; Kanematsu, K.; Murata, M. J. Org. Chem.
1971, 36, 446.
16. Laakso, P. V.; Robinson, R.; Vandrewala, H. P. Tetrahe-
dron 1957, 1, 103.
In conclusion, we have described the synthesis and the
SAR associated with novel nonprostanoid IP receptor
agonists, with emphasis on the pyrazine ring of lead
compound 2. The results of a molecular-modeling study
provide a rationale for the observed SAR, and identify
the interactions important for agonistic activity. To
our knowledge, the present docking models are the first
ones constructed for nonprostanoid IP receptor ago-
nists. This type of study is expected to open new per-
spectives for the rational design of nonprostanoid-type
IP receptor agonists.
17. Tohda, Y.; Eiraku, M.; Nakagawa, T.; Usami, Y.; Ariga,
M.; Kawashima, T.; Tani, K.; Watanabe, H.; Mori, Y.
Bull. Chem. Soc. Jpn. 1990, 63, 2820.
18. Crochet, R. A.; Dewitt, B. C. Synthesis 1974, 55.
´
´
19. SanMartın, R.; Marigorta, E. M.; Domınguez, E. Tetra-
hedron 1994, 50, 2255.
20. Stitham, J.; Stojanovic, A.; Merenick, B. L.; O’Hara, K.
A.; Hwa, J. J. Biol. Chem. 2003, 278, 4250.
Acknowledgment
21. Halgren, T. A. J. Comput. Chem. 1996, 17, 490.
22. Muchmore, S. W.; Souers, A. J.; Akritopoulou-Zanze, I.
Chem. Biol. Drug Des. 2006, 67, 174.
We thank Dr. Gerald E. Smyth for helpful suggestions
during the preparation of the manuscript.