C O M M U N I C A T I O N S
Scheme 3. Deuterium Labeling Experiment
a combination of NMR-based conformational analysis and chirop-
tical methods (cf. Supporting Information), indicates that C-C bond
cleavage as well as reductive elimination took place with retention
of configuration. This finding is in excellent agreement with
conclusions previously reached for related metal-catalyzed higher
order cycloadditions.12
In summary, we have outlined a productive crossover between
catalytic C-H activation and cycloisomerization chemistry. Further
studies on this and related catalysis tandems are subject to ongoing
studies in our laboratories.
Acknowledgment. Financial support by the MPG and the Fonds
der Chemischen Industrie is gratefully acknowledged. We thank
our X-ray and NMR departments for excellent support.
Table 2. Cycloheptenones by Rhodium-Catalyzed C-H
Activation/ Cycloisomerization of Aldehyde Derivativesa,b
Supporting Information Available: Experimental part, NMR
spectra of new compounds, and CD spectra of compound 21. This
References
(1) (a) Shilov, A. E.; Shul’pin, G. B. Chem. ReV. 1997, 97, 2879. (b) Kakiuchi,
F.; Chatani, N. AdV. Synth. Catal. 2003, 345, 1077. (c) Ritleng, V.; Sirlin,
C.; Pfeffer, M. Chem. ReV. 2002, 102, 1731. (d) Miura, M.; Nomura, M.
Top. Curr. Chem. 2002, 219, 211. (e) Dick, A. R.; Sanford, M. S.
Tetrahedron 2006, 62, 2439. (f) Godula, K.; Sames, D. Science 2006,
312, 67. (g) Dyker, G., Ed. Handbook of C-H Transformations; Wiley-
VCH: Weinheim, Germany, 2005. (h) Klei, S. R.; Tian, K. L.; Golden,
J. T.; Yung, C. M.; Thalji, R. K.; Ahrendt, K. A.; Ellman, J. A.; Tilley,
T. D.; Bergman, R. G. ACS Symp. Ser. 2004, 885, 46. (i) C-C bond
activation: Rybtchinski, B.; Milstein, D. Angew. Chem., Int. Ed. 1999,
38, 870.
(2) (a) Murai, S.; Kakiuchi, F.; Sekine, S.; Tanaka, Y.; Kamatani, A.; Sonoda,
M.; Chatani, N. Nature 1993, 366, 529. (b) Fujii, N.; Kakiuchi, F.;
Yamada, A.; Chatani, N.; Murai, S. Bull. Chem. Soc. Jpn. 1998, 71, 285.
(3) (a) Wender, P. A.; Takahashi, H.; Witulski, B. J. Am. Chem. Soc. 1995,
117, 4720. (b) Yu, Z.-X.; Wender, P. A.; Houk, K. N. J. Am. Chem. Soc.
2004, 126, 9154. (c) Wender, P. A.; Sperandio, D. J. Org. Chem. 1998,
63, 4164. (d) Tsukada, N.; Shibuya, A.; Nakamura, I.; Yamamoto, Y. J.
Am. Chem. Soc. 1997, 119, 8123. (e) Harayama, H.; Kuroki, T.; Kimura,
M.; Tanaka, S.; Tamaru, Y. Angew. Chem., Int. Ed. Engl. 1997, 36, 2352.
(f) Trost, B. M.; Toste, F. D.; Shen, H. J. Am. Chem. Soc. 2000, 122,
2379. (g) Kim, S.; Takeuchi, D.; Osakada, K. J. Am. Chem. Soc. 2002,
124, 762. (h) Huffman, M. A.; Liebeskind, L. S. J. Am. Chem. Soc. 1993,
115, 4895. (i) Zuo, G.; Louie, J. J. Am. Chem. Soc. 2005, 127, 5798. (j)
Saito, A.; Ono, T.; Hanzawa, Y. J. Org. Chem. 2006, 71, 6437. (k) Lee,
S. I.; Park, S. Y.; Park, J. H.; Jung, I. G.; Choi, S. Y.; Chung, Y. K.; Lee,
B. Y. J. Org. Chem. 2006, 71, 91 and literature cited.
a Isolated yields. b [Rh(coe)2Cl]2 (5 mol %), (p-MeOC6H4)3P (20 mol
%), DCE, ethene, 120 °C (sealed tube). c [Rh(coe)2Cl]2 (2.5 mol %),
(p-MeOC6H4)3P (10 mol %), DCE, ethene, 80 °C (sealed tube).
Scheme 4. Regio- and Stereoselectivity
(4) (a) Stoichiometric C-H/C-C tandem: Jun, C.-H. Organometallics 1996,
15, 895. (b) Catalytic C-H/C-C tandem: Jun, C.-H.; Lee, H.; Park, J.-
B.; Lee, D.-Y. Org. Lett. 1999, 1, 2161. (c) Stoichiometric M-H addition
to methylenecyclopropanes followed by ring opening: (d) Jun, C.-H.; Lim,
Y.-G. Bull. Korean Chem. Soc. 1989, 10, 468. (e) Nishihara, Y.; Yoda,
C.; Itazaki, M.; Osakada, K. Bull. Chem. Soc. Jpn. 2005, 78, 1469.
(5) (a) Lim, Y.-G.; Kang, J.-B.; Kim, Y. H. Chem. Commun. 1996, 585. (b)
Lim, Y.-G.; Kang, J.-B.; Koo, B. T. Tetrahedron Lett. 1999, 7691. (c)
Lee, D.-Y.; Kim, I.-J.; Jun, C.-H. Angew. Chem., Int. Ed. 2002, 41, 3031.
(6) For the preparation of the substrates, see the Supporting Information.
(7) Isoxazoles were also tried as directing groups but were found to be less
efficient.
(8) Catalytic intramolecular hydroacylations: (a) Sakai, K.; Ide, J.; Oda, O.;
Nakamura, N. Tetrahedron Lett. 1972, 1287. (b) Lochow, C. F.; Miller,
R. G. J. Am. Chem. Soc. 1976, 98, 1281. (c) Larock, R. C.; Oertle, K.;
Potter, G. F. J. Am. Chem. Soc. 1980, 102, 190. (d) Formation of seven-
membered rings: Sato, Y.; Oonishi, Y.; Mori, M. Angew. Chem., Int.
Ed. 2002, 41, 1218. (e) Review: Bosnich, B. Acc. Chem. Res. 1998, 31,
667.
(9) For a related concept using Vinyl cyclopropanes for the formation of eight-
membered rings, see: Aloise, A. D.; Layton, M. E.; Shair, M. D. J. Am.
Chem. Soc. 2000, 122, 12610.
Rotation as indicated in Scheme 4 is necessary to eclipse the C-Rh
bond with the C-C bond of the cyclopropane; a subsequent strain-
driven ring expansion followed by reductive elimination of the
ensuing metallacycle G then leads to ketone 21 as the only observed
product. The analogous pathway explains the formation of product
22 from aldehyde 20. In both cases, it is the C-C bond of the
cyclopropane that is cis relative to the C-Ar unit (color coded in
red) which is broken during the cycloisomerization, independent
of the degree of substitution. The absolute configuration of the
newly formed stereogenic center in 21, which was established by
(10) For a catalytic rearrangement of alkylidenecyclopropanes from our group,
see: Fu¨rstner, A.; A¨ıssa, C. J. Am. Chem. Soc. 2006, 128, 6306.
(11) Ethylene is thought to retard decarbonylation and facilitate the final
reductive elimination; cf. ref 8 and: Campbell, R. E.; Lochow, C. F.;
Vora, K. P.; Miller, R. G., J. Am. Chem. Soc. 1980, 102, 5824.
(12) (a) Wender, P. A.; Dyckman, A, J.; Husfeld, C. O.; Kadereit, D.; Love,
J. A.; Rieck, H. J. Am. Chem. Soc. 1999, 121, 10442. (b) Wender, P. A.;
Dyckman, A. J. Org. Lett. 1999, 1, 2089. (c) Trost, B. M.; Shen, H. C.
Org. Lett. 2000, 2, 2523.
JA0746316
9
J. AM. CHEM. SOC. VOL. 129, NO. 48, 2007 14837