3.67 (1H, m, COCHCO), 3.94 (1H, m, ArCHCO), 4.13 (q, 2H
OCH2CH3), 7.23–7.32 (5H, m, Ar); 13C NMR (75 MHz, CDCl3)
d 14.1 (CH2CH3), 26.3, 27.9, 28.7, 32.7 (CH2CH2CH2CH2),
57.2 (COCHAr), 58.4 (COCHCO), 61.0 (COOCH2CH3), 126.9,
127.0, 127.9, 128.2, 128.3, 139.7 (Ar), 170.2 (COOC2H5), 207.9
(CO); ESI-TOF+: 261.1748 (M + H)+.
residue was chromatographed on silica gel with EtOAc–petroleum
ether as eluent to afford the pure N-1 alkylated product.
1-(Ethoxymethyl)-6,7,8,9-tetrahydro-9-phenyl-1H-cyclohepta-
[d]pyrimidine-2,4(3H,5H)-dione (7a). Yield (32 mg, 92.6%); mp
180–182 ◦C (10% EtOAc–petroleum ether), white solid; (found:
C, 68.73; H, 7.10; N, 9.00%, C18H22N2O3, requires C, 68.77;
1
H, 7.05; N, 8.91); mmax/cm−1 3349.99, 1669.80 and 1608.77; H
Ethyl-2-oxo-3-p-tolylcycloheptanecarboxylate
(5b). Yield
(740 mg, 89.9%); yellow oil; 1H NMR (300 MHz, CDCl3) d
1.22 (3H, t, CH2CH3), 1.35–2.23 (8H, m, CH2CH2CH2CH2),
2.32 (3H, s, ArCH3), 3.65 (1H, m, COCHCO), 3.91 (1H, m,
ArCHCO), 4.15 (q, 2H, OCH2CH3), 7.10–7.25 (4H, m, Ar);
13C NMR (75 MHz, CDCl3) d 14.0 (CH2CH3), 21.0 (ArCH3),
26.2, 27.7, 28.3, 32.9 (CH2CH2CH2CH2), 56.9 (COCHAr), 58.2
(COCHCO), 61.1 (COOCH2CH3), 127.7, 128.2, 128.9, 129.1,
136.6,136.7 (Ar), 170.2 (COOC2H5), 208.1 (CO); ESI-TOF+
275.1558 (M+ H)+.
NMR (300 MHz, CDCl3) d 1.20 (3H, t, CH2CH3), 1.42–2.98
(8H, m, CH2CH2CH2CH2), 3.60 (2H, m, OCH2CH3), 4.71(1H,
m, ArCH), 4.74, 5.54 (2H, 2 × d, J 11.4, NCH2O), 7.17–7.38
(5H, m, Ar), 8.51 (1H, s, NH3); 13C NMR (75 MHz, CDCl3) d
15.1 (CH2CH3), 21.7, 23.6, 24.7, 30.9 (CH2CH2CH2CH2), 44.5
(ArCH), 64.9 (OCH2CH3), 72.8 (NCH2O), 116.0 (C5),126.9,
127.0, 127.0, 129.1, 129.1, 138.5 (Ar), 151.6 (C6), 154.8 (C2), 163.2
(C4); ESI-TOF+ 315.1571 (M + H)+.
1-[(Benzyloxy)methyl]-6,7,8,9-tetrahydro-9-phenyl-1H-cyclo-
hepta[d]pyrimidine-2,4(3H,5H)-dione (8a). Yield (29 mg,
70.5%); mp 50–52 ◦C (10% EtOAc–petroleum ether), white
solid; (found: C, 73.40; H, 6.47; N, 7.49%, C23H24N2O3, requires
C, 73.38; H, 6.43; N, 7.44%); mmax/cm−1 3340.18, 1670.23 and
1617.65; 1H NMR (300 MHz, CDCl3) d 1.60–2.95 (8H, m,
CH2CH2CH2CH2), 4.69(1H, m, ArCH), 4.75(2H, m, PhCH2O),
4.79, 5.66 (2 H, 2 × d, J 11.1, NCH2O), 7.25–7.37 (10H, m, 2 ×
Ar), 9.2 (1H, s, NH3); 13C NMR (75 MHz, CDCl3) d 21.5, 23.5,
24.6, 30.9 (CH2CH2CH2CH2), 44.7 (ArCH), 65.2 (OCH2Ph),
72.7 (NCH2O), 116.0 (C5),126.8, 126.8, 126.9, 126.9, 127.5, 127.9,
128.5, 128.5, 129.1, 129.1, 137.2, 138.4 (2 × Ar), 152.0 (C6), 154.5
(C2), 163.6 (C4); ESI-TOF+: 377.1569 (M + H)+.
General procedure for the preparation of compounds 6a–b
Urea (3.3 mmol) and compound 5 (3.0 mmol) were added to a
solution of sodium metal (4.0 mmol) in 9 mL of absolute ethanol,
and the mixture was heated at reflux for 6 h. After evaporation
in vacuo at 40–50 ◦C until nearly dryness, the residue was dissolved
in 5 mL water and then precipitated by addition of dilute aqueous
HCl to pH 4. The crude product was recrystalized from ethanol
to afford pure 6a–b.
6,7,8,9-Tetrahydro-9-phenyl-1H -cyclohepta[d]pyrimidine-2,4-
(3H,5H)-dione (6a). Yield (400 mg, 52.0%); mp 230–232 ◦C
(EtOH), white solid; (found: C, 70.31; H, 6.25; N, 10.87%,
C15H16N2O2, requires C, 70.29; H, 6.29; N, 10.93%); mmax/cm−1
3452.17, 3229.26, 1716.58 and 1634.28;1H NMR (300 MHz,
DMSO-d6) d 1.35–2.83 (8H, m, CH2CH2CH2CH2), 4.05 (1H,
m, CHAr), 7.19–7.39 (5H, m, Ar), 10.53 (1H, s, NH1), 11.10
(1H, s, NH3); 13C NMR (75 MHz, DMSO-d6) d 21.5, 24.0, 25.6,
29.9 (CH2CH2CH2CH2), 46.7 (ArCH), 111.1 (C5), 126.5, 127.1,
127.1, 128.7, 128.7, 138.5 (Ar), 150.8 (C6), 153.4 (C2), 164.8 (C4);
ESI-TOF+ 257.1845 (M + H)+.
1-(Ethoxymethyl)-6,7,8,9-tetrahydro-9-p-tolyl-1H-cyclohepta
[d]pyrimidine-2,4(3H,5H)-dione (7b). Yield (32 mg, 88.2%); mp
136–138 ◦C (10% EtOAc–petroleum ether), white solid; (found:
C, 69.44; H, 7.41 N, 8.60%, C19H24N2O3, requires C, 69.49;
H, 7.37; N, 8.53%); mmax/cm−1 3338.15, 1668.54, 1600.98; 1H
NMR (300 MHz, CDCl3) d 1.16 (3H, t, CH2CH3), 1.45–2.98
(8H, m, CH2CH2CH2CH2), 2.34 (3 H, s, ArCH3), 3.61 (2H, m,
OCH2CH3), 4.66 (1 H, m, PhCH), 4.73, 5.56 (2 H, 2 × d, J 11.4,
NCH2O), 7.04–7.17 (4H, m, Ar), 8.94 (1H, s, NH3); 13C NMR
(75 MHz, CDCl3) d 15.1 (CH2CH3), 21.0 (PhCH3), 21.7, 23.6,
24.7, 30.9 (CH2CH2CH2CH2), 44.2 (ArCH), 64.8 (OCH2CH3),
72.7 (NCH2O), 115.8 (C5), 126.8, 126.8, 129.8, 129.8, 135.4, 136.6
(Ar), 151.8 (C6), 155.0 (C2), 163.4 (C4); ESI-TOF+: 329.1687 (M +
H)+.
6,7,8,9-Tetrahydro-9-p-tolyl-1H-cyclohepta[d]pyrimidine-2,4-
(3H,5H)-dione (6b). Yield (373 mg, 46.0%); mp 236–238 ◦C
(EtOH), white solid; (found: C, 71.11; H, 6.75; N, 10.30%,
C16H18N2O2, requires C, 71.09; H, 6.71; N, 10.36%); mmax/cm−1
3410.89, 3219.36, 1709.85 and 1640.31; 1H NMR (300 MHz,
DMSO-d6) d 1.22–2.83 (8H, m, CH2CH2CH2CH2), 2.28 (3H, s,
ArCH3), 4.00 (1H, m, CHAr), 7.05–7.17 (4H, m, Ar), 10.52 (1H, s,
NH1), 11.10 (1H, s, NH3); 13C NMR (75 MHz, DMSO-d6) d 20.6
(PhCH3), 21.5, 24.1, 25.7, 29.9 (CH2CH2CH2CH2), 46.3 (ArCH),
111.5 (C5), 127.0, 127.0, 129.3, 129.3, 131.5, 135.4 (Ar), 151.0
(C6), 153.7 (C2), 164.8 (C4); ESI-TOF+ 271.1654 (M + H)+.
1-[(Benzyloxy)methyl]-6,7,8,9-tetrahydro-9-p-tolyl-1H-cyclo-
hepta[d]pyrimidine-2,4(3H,5H)-dione (8b). Yield (30 mg,
70.0%); mp 60–62 ◦C (10% EtOAc–petroleum ether), white
solid; (found: C, 73.79; H, 6.68; N, 7.12%, C24H26N2O3, requires
C, 73.82; H, 6.71; N, 7.17%); mmax/cm−1 3343.28, 1675.36 and
1619.21; 1H NMR (300 MHz, CDCl3) d 1.60–2.95 (8H, m,
CH2CH2CH2CH2), 2.33 (3H, s, ArCH3), 4.64(1H, m, ArCH),
4.70 (2H, m, PhCH2O), 4.77, 5.66 (2 H, 2 × d, J 11.1, NCH2O),
7.00–7.38 (9H, m, 2 × Ar), 8.89 (1H, s, NH3); 13C NMR (75 MHz,
CDCl3) d 21.0 (ArCH3), 21.6, 23.5, 24.6, 31.0 (CH2CH2CH2CH2),
44.4 (ArCH), 71.5 (OCH2Ph), 72.7 (NCH2O), 115.9 (C5), 126.8,
127.9, 127.9, 128.0, 128.0, 128.4, 128.4, 129.8, 129.8, 135.3, 136.6,
137.2 (2 × Ar), 151.8 (C6), 154.7 (C2), 163.3 (C4); ESI-TOF+:
391.1543 (M + H)+.
General procedure for the preparation of compounds 7a–b and 8a–b
To a suspension of 5 (0.11 mmol) in 2 mL dry CHCl3 was
added N,O-bis(trimethylsilyl)acetamide (BSA) 0.24 mmol and
the stirring was continued to obtain a clear solution. Then
chloromethyl ether (0.13 mmol) was added and the reaction
mixture was stirred until TLC showed no change in amount of
starting material. After evaporation of the solvent in vacuo, the
3256 | Org. Biomol. Chem., 2006, 4, 3252–3258
This journal is
The Royal Society of Chemistry 2006
©