ORGANIC
LETTERS
2007
Vol. 9, No. 25
5311-5314
Synthesis and DNA Incorporation of an
Ethynyl-Bridged Cytosine C-Nucleoside
as Guanosine Surrogate
Daniel Heinrich, Thomas Wagner, and Ulf Diederichsen*
Institut fu¨r Organische und Biomolekulare Chemie, UniVersita¨t Go¨ttingen,
Tammannstrasse 2, D-37077 Go¨ttingen, Germany
Received October 17, 2007
ABSTRACT
As a guanosine mimic that lacks the preference for syn or anti conformation a cytosine C-nucleoside was synthesized connecting the nucleobase
at the anomeric center by an ethynyl linker. The key step was a Sonogashira cross coupling of 5-iodocytosine with 1 -ethynyl-2 -deoxyribose.
′
′
The new C-nucleoside incorporated into G/C-alternating oligonucleotides emerged as guanosine substitute, however, with reduced duplex
stability. B-Form DNA was strongly stabilized by the new surrogate even in typically Z-DNA forming sequences and in Z-form inducing
environment.
Properties and recognition potential of large biomolecules
like oligonucleotides are not only determined by the primary
structure but also strongly depend on parameters like solvent,
temperature, and salt concentration.1 Conversion between
DNA helix topologies like the right-handed A- and B-DNA
or the left-handed Z-DNA double helix can be induced by
changing the environment. The various DNA-forms encode
information since they are specifically recognized by small
molecules2 or proteins3 on the basis of hydrogen bonding or
shape recognition in the duplex grooves. Therefore, it is of
interest to specifically enforce one kind of DNA topology
or to stabilize dsDNA by ribosyl or nucleobase modifications
to preferentially obtain a defined DNA-form. Initially, it was
our intention to stabilize Z-DNA providing a guanosine
surrogate that resembles the required but energetically less
favored syn conformation. Nucleoside modifications known
to favor Z-DNA either address the required 2′-endo ribosyl
conformation4 or introduce substituents at C8 of purines5 or
at C5 of pyrimidines6 to sterically enhance the likelihood
(1) (a) Saenger, W. Principles of Nucleic Acid Structure; Springer: New
York, 1984. (b) Rich, A.; Nordheim, A.; Wang, A. H.-J. Ann. ReV. Biochem.
1984, 53, 791.
(2) (a) Spingler, B.; Antoni, P. M. Chem. Eur. J. 2007, 13, 6617. (b)
Qu, X.; Trent, J. O.; Fokt, I.; Priebe, W.; Chaires, J. B. Proc. Natl. Acad.
Sci. U.S.A. 2000, 97, 12032. (c) Kim, Y.-G.; Park, H.-J.; Kim, K. K.;
Lowenhaupt, K.; Rich, A. Nucleic Acids Res. 2006, 34, 4937.
(3) (a) Travers, A. A. DNA-Protein Interactions; Chapman & Hall:
London, 1993. (b) Lilley, D. M. J. DNA-Protein: Structural Interactions;
IRL Press: Oxford, U.K., 1995.
(4) (a) Buff, R.; Hunziker, J. Synlett 1999, 905. (b) Buff, R.; Hunziker,
J. HelV. Chim. Acta 2002, 85, 224. (c) Lafer, E. M.; Mo¨ller, A.; Nordheim,
A.; Stollar, B. D.; Rich, A. Proc. Natl. Acad. Sci. U.S.A. 1981, 78, 3546.
(d) Xu, Y.; Ikeda, R.; Sugiyama, H. J. Am. Chem. Soc. 2003, 125, 13519.
(5) (a) Sugiyama, H.; Kawai, K.; Matsunaga, A.; Fujimoto, K.; Saito,
I.; Robinson, H.; Wang, A. H.-J. Nucleic Acids Res. 1996, 24, 1272. (b)
Uesugi, S.; Shida, T.; Ikehara, M. Biochemistry 1982, 21, 3400.
(6) Behe, M.; Felsenfeld, G. Proc. Natl. Acad. Sci. U.S.A. 1981, 78, 1619.
(7) (a) Kool, E. T. Acc. Chem. Res. 2002, 35, 936. (b) Kool, E. T. Annu.
ReV. Biophys. Biomol. Struct. 2001, 30, 1.
(8) (a) Diederichsen, U. Angew. Chem., Int. Ed. 1998, 37, 1655. (b)
Diederichsen, U.; Biro, C. Bioorg. Med. Chem. Lett. 2000, 10, 1417.
(9) Sonogashira, K.; Tohda, Y.; Hagihara, N. Tetrahedron Lett. 1975,
16, 4467.
(10) Franc¸ois, P.; Perilleux, D.; Kempener, Y.; Sonveaux, E. Tetrahedron
Lett. 1990, 31, 6347.
(11) Srivastava, P. C.; Robbins, R. K.; Takusagawa, F.; Berman, H. M.
J. Heterocyclic Chem. 1981, 18, 1659.
(12) Gait, M. J. Oligonucleotide Synthesis, A Practical Approach, IRL
Press, Oxford 1984.
10.1021/ol7025334 CCC: $37.00
© 2007 American Chemical Society
Published on Web 11/14/2007