prepared from nitroethane and nitropropane were employed
instead of the nitroalkanes, but they reported no results for
nitromethane.6 Arvidsson and co-workers recently reported
the Michael reaction of R,â-unsaturated aldehydes with
nitroalkanes catalyzed by imidazole-containing organocata-
lyst. The reaction had limited success with nitroethane and
nitropropane, but only moderate enantioselectivity (47% ee)
with nitromethane.7 However, no widely applicable, direct
Michael reactions of simple nitroalkanes, and inclusive of
nitromethane, with R,â-unsaturated aldehydes have been
described, in spite of the synthetic potential of such reac-
tions.8 In this communication, we disclose such a reaction.
The Michael reaction of nitromethane and cinnamaldehyde
was selected as a model (eq 3). First silyl ethers of
diarylprolinols,9,10,11 independently developed by Jørgensen’s9
and our2,10 groups, were used as catalyst. When diphenyl-
prolinol silyl ether 1 was employed, the desired product was
obtained with excellent enantioselectivity (98% ee), in spite
of the low yield which is caused by over-reaction of the
initially generated product with a second nitromethane via
the Henry reaction. To improve the yield, the reaction
conditions were examined in detail. It was found that both
the additive and solvent used in the reaction are important.
After screening of additives such as p-nitrophenol,10a PhCO2H,
CF3CO2H, NaHCO3, and AcONa, the reaction was found to
be accelerated in the presence of PhCO2H. After screening
the solvent, we found that excellent yield and enantioselec-
tivity were achieved when MeOH10a was employed (Table
1). It should be noted that the bis(trifluoromethyl) substi-
Table 1. Optimization of the Reaction Conditionsa
entry
catalyst
solvent
time/h
yield/%b
ee/%c
d
1
2
3
4
5
6
7
1
1
1
1
1
2
3
-
28
8
31e
56
56
63
90
57
52
98
96
93
97
95
82
77
CH3CN
DMF
CH2Cl2
MeOH
MeOH
MeOH
24
16
16
16
16
(3) (a) Funabashi, K.; Saida, Y.; Kanai, M.; Arai, T.; Sasai, H.; Shibasaki,
M. Tetrahedron Lett. 1998, 39, 7557. (b) Itoh, K.; Kanemasa, S. J. Am.
Chem. Soc. 2002, 124, 13394. (c) Sammis, G. M.; Jacobsen, E. N. J. Am.
Chem. Soc. 2003, 125, 4442. (d) Choudary, B. M.; Ranganath, K. V. S.;
Pal, U.; Kantam, M. L.; Sreedhar, B. J. Am. Chem. Soc. 2005, 127, 13167.
(e) Palomo, C.; Pazos, R.; Oiarbide, M.; Garcia, J. M. AdV. Synth. Catal.
2006, 348, 1161 and references therein. (f) Review, see: Ballini, R.; Bosica,
G.; Fiorini, D.; Palmieri, A.; Petrini, M. Chem. ReV. 2005, 105, 933.
(4) Reviews on organocatalysis, see: (a) Berkessel, A.; Groger, H.
Asymmetric Organocatalysis; Wiley-VCH: Weinheim, 2005. (b) Dalko,
P. I.; Moisan, L. Angew. Chem., Int. Ed. 2004, 43, 5138. (c) Hayashi, Y. J.
Synth. Org. Chem. Japan 2005, 63, 464. (d) List, B. Chem. Commun. 2006,
819. (e) Marigo, M.; Jørgensen, K. A. Chem. Commun. 2006, 2001. (f)
Gaunt, M. J.; Johnsson, C. C. C.; McNally, A.; Vo, N. T. Drug DiscoVery
Today 2007, 12, 8. (g) Dalko, P. I., Ed. EnantioselectiVe Organocatalysis;
Wiley-VCH: Weinheim, 2007.
(5) (a) Yamaguchi, M.; Shiraishi, T.; Hirama, M. J. Org. Chem. 1996,
61, 3520. (b) Hanessian, S.; Pham, V. Org. Lett. 2000, 2, 2975. (c) Corey.
E. J.; Zhang, F.-Y. Org. Lett. 2000, 2, 4257. (d) Ooi, T.; Fujioka, S.;
Maruoka, K. J. Am. Chem. Soc. 2004, 126, 11790. (e) Vakulya, B.; Varga,
S.; Csampai, A.; Soos, T. Org. Lett. 2005, 7, 1967. (f) Prieto, A.; Halland,
N.; Jørgensen, K. A. Org. Lett. 2005, 7, 3897. (g) Mitchell, C. E. T.; Brenner,
S. E.; Ley, S. V. Chem. Commun. 2005, 5346. (h) Mitchell, C. E. T.;
Brenner, S. E.; Garcia-Fortanet, J.; Ley, S. V. Org. Biomol. Chem. 2006,
4, 2039. (i) Inokuma, T.; Hoashi, Y.; Takemoto, Y. J. Am. Chem. Soc.
2006, 128, 9413.
a Unless otherwise shown, the reaction was performed employing
cinnamaldehyde (0.6 mmol), nitromethane (1.8 mmol), catalyst (0.06 mmol),
PhCO2H (0.12 mmol), and solvent (1.2 mL) at rt. b Isolated yield. c Optical
purity was determined by the chiral GC analysis. d Neat reaction conditions
without PhCO2H. e 1,5-Dinitro-4-phenyl-1-pentene was obtained in 22%
yield.
tuted catalyst 2 and diphenylprolinol 3 were ineffective
(entries 6, 7).
(6) (a) Ooi, T.; Doda, K.; Maruoka, K. J. Am. Chem. Soc. 2003, 125,
9022. (b) Ooi, T.; Motimoto, K.; Doda, K.; Maruoka, K. Chem. Lett. 2004,
33, 824. (c) Ooi, T.; Doda, K.; Takeda, S.; Maruoka, K. Tetrahedron Lett.
2006, 47, 145.
(7) Hojabri, L.; Hartikka, A.; Moghaddam, F. M.; Arvidsson, P. I. AdV.
Synth. Catal. 2007, 349, 740.
(8) During the preparation of this manuscript, Palomo reported the similar
reaction using dialkylprolinol silyl ether as an organocatalyst in the presence
of water. Palomo, C.; Landa, A.; Mielgo, A.; Oiarbide, M.; Puente, A.;
Vera, S. Angew. Chem., Int. Ed. 2007, 48. DOI: 10.1002/anie.200703261.
(9) (a) Marigo, M.; Wabnitz, T. C.; Fielenbach, D.; Jørgensen, K. A.
Angew. Chem., Int. Ed. 2005, 44, 794. (b) Marigo, M.; Fielenbach, D.;
Braunton, A.; Kjasgaard, A.; Jørgensen, K. A. Angew. Chem., Int. Ed. 2005,
44, 3703. (c) Marigo, M.; Franzen, J.; Poulsen, T. B.; Zhuang, W.;
Jørgensen, K. A. J. Am. Chem. Soc. 2005, 127, 6964. (d) Marigo, M.;
Schulte, T.; Franzen, J.; Jørgensen, K. A. J. Am. Chem. Soc. 2005, 127,
15710. (e) Zhuang, W.; Marigo, M.; Jørgensen, K. A. Org. Biomol. Chem.
2005, 3, 3883. (f) Franzen, J.; Marigo, M.; Fielenbach, D.; Wabnitz, T. C.;
Kjasgaard, A.; Jørgensen, K. A. J. Am. Chem. Soc. 2005, 127, 18296. (g)
Brandau, S.; Landa, A.; Franzen, J.; Marigo, M.; Jørgensen, K. A. Angew.
Chem., Int. Ed. 2006, 45, 4305. (h) Brandau, S.; Maerten, E.; Jørgensen,
K. A. J. Am. Chem. Soc. 2006, 128, 14986. (i) Carlone, A.; Marigo, M.;
North, C.; Landa, A.; Jørgensen, K. A. Chem. Commun. 2006, 4928. (j)
Bertelsen, S.; Marigo, M.; Brandes, S.; Diner, P.; Jørgensen, K. A. J. Am.
Chem. Soc. 2006, 128, 12973. (k) Bertelsen, S.; Diner, P.; Johansen, R. L.;
Jørgensen, K. A. J. Am. Chem. Soc. 2007, 129, 1536. (l) Aleman, J.; Cabrera,
S.; Maerten, E.; Overgaard, J.; Jørgensen, K. A. Angew. Chem., Int. Ed.
2007, 46, 5520.
Figure 1. Organocatalysts examined in this study.
As the best conditions had been found, the generality of
the reaction was investigated, with the results summarized
in Table 2. Not only phenyl, but also a 2-naphthyl-substi-
tuted acrolein derivative gave an excellent result (entry 2).
The reaction proceeds efficiently for acrolein derivatives not
only with electron-rich aromatic substituents such as 3,4-
methylenedioxyphenyl and p-methoxyphenyl (entries 3, 4),
but also with electron-deficient substituents such as p-bro-
mophenyl, p-chlorophenyl, and p-nitrophenyl (entries 5-8),
(10) (a) Gotoh, H.; Masui, R.; Ogino, H.; Shoji, M.; Hayashi, Y. Angew.
Chem., Int. Ed. 2006, 45, 6853. (b) Hayashi, Y.; Okano, T.; Aratake, S.;
Hazelard, D. Angew. Chem., Int. Ed. 2007, 46, 4922. (c) Gotoh, H.; Hayashi,
Y. Org. Lett. 2007, 9, 2859.
5308
Org. Lett., Vol. 9, No. 25, 2007